. | . |
Distant galaxies are dominated by gas and stars so where is the Dark Matter by Staff Writers Munich, Germany (SPX) Mar 16, 2017
New observations of rotating galaxies at the peak epoch of galaxy formation, 10 billion years ago, surprisingly show that these massive, star-forming galaxies are completely dominated by baryonic or "normal" mass with dark matter playing a much smaller role in comparable regions of their outer disks than in the local universe. The international group of researchers led by the Max Planck Institute for Extraterrestrial Physics mapped the rotation curves of six galaxies to distances of ~65,000 light years from their centres and found that their rotation velocities are not constant but drop with radius. These findings are supported by observations of more than 200 further galaxies, where different estimates of their dynamical state also indicate a high baryonic mass fraction. In addition, the analysis shows that these early galaxies had a much thicker disk with turbulent motion accounting for part of the dynamical support. These findings are published in a paper in the journal Nature as well as three accompanying papers in the Astrophysical Journal. Over the past few decades, many different studies of galaxies in the local universe have shown the existence and importance of so-called "dark matter". While normal, or "baryonic", matter can be seen as brightly shining stars or luminous gas and dust, dark matter interacts with normal matter only through gravity. In particular it is responsible for flat rotation curves in spiral galaxies, i.e. rotation velocities that are constant or increasing with radius. An international team of astronomers, led by Reinhard Genzel at the Max Planck Institute for Extraterrestrial Physics, have now obtained deep imaging spectroscopy of several hundred massive, star-forming galaxies in the distant universe (at redshift 0.6 to 2.6). This allowed the researchers to extract the rotation curves, which give valuable constraints on the mass distribution out to the edge of the visible disk for both baryonic and dark matter at the peak of cosmic galaxy formation 10 billion years ago. For six galaxies with the highest quality data, the scientists were able to obtain individual rotation curves, while they used a novel stacking approach for about 100 galaxies to constrain an average, representative rotation curve. "Surprisingly, the rotation velocities are not constant, but drop with radius," states Reinhard Genzel, first author of a Nature publication about the result. "The reason for this is twofold: First, most of these early massive galaxies are strongly dominated by normal matter with dark matter playing a much smaller role than in the local universe. Second, these early disks were much more turbulent than the spiral galaxies we see in our cosmic neighbourhood, so they did not need as much circular motion to be dynamically supported." Both effects seem to increase with redshift, which means that they are more important at earlier cosmic times. This suggests that in the early Universe, about 3 to 4 billion years after the Big Bang, the gas in galaxies had already very efficiently condensed at the centre of large dark matter halos. It took many billion years longer for the dark matter in the halo to condense as well, so it is not until later times that we see its dominant effect on the rotation velocities of modern disk galaxies. This explanation also agrees with the fact that high-redshift galaxies were much more gas rich and compact compared to low-redshift galaxies. Such a high gas fraction helps to dissipate angular momentum and to drive the gas inwards. "We have to be very careful when comparing these early massive and gas-rich rotating galaxies to the ones in our local universe," cautions Natascha Forster Schreiber, co-author for all four studies. "Present-day spirals, such as our Milky Way, require additional dark matter in various amounts. On the other hand, local passive galaxies - which are dominated by a spheroidal component and are the likely descendants of the galaxies in our study - show similarly low dark matter fractions on galactic scales." Two additional studies of 240 star forming disks support these findings. Detailed dynamical modelling shows that, while baryons account for typically 56% of the total mass fraction in all galaxies, they completely dominate the inner matter distribution for galaxies at the highest redshifts. The other analysis used the same data in the framework of the Tully-Fisher relation describing a tight relationship between the rotation velocity of a galaxy and its mass or luminosity. Again, the observations show that massive star-forming galaxies at high redshift have a higher baryon fraction out to the outer disk than at lower redshift. "You can do the arithmetic," explains Stijn Wuyts from the University of Bath, a co-author on all four papers, "the dynamics reveal the total mass present. Subtract from that what we see in the form of stars and gas, and there really is not much room left for dark matter within these early disk galaxies. The dropping rotation curves are not only in line with these results, they provide a more direct indication of the baryon dominated nature, especially to researchers that have a healthy scepticism about the accuracy with which one can measure the amount of stars and gas in these distant objects." The data analysed were obtained with the integral field spectrometers KMOS and SINFONI at ESO's Very Large Telescope in Chile in the framework of the KMOS3D and SINS/zC-SINF surveys. It is the first time that such a comprehensive study of the dynamics of a large number of galaxies spanning the redshift interval from z~0.6 to 2.6, or 5 billion years of cosmic time, has been carried out. The team analysing and interpreting the data in the Nature publication consists of R. Genzel, N.M. Forster Schreiber, H. Ubler, P. Lang, L.J. Tacconi, E. Wisnioski, S. Belli, A. Burkert, J. Chan, R. Davies, M. Fossati, A. Galametz, O. Gerhard, D. Lutz, J.T. Mendel, E.J. Nelson, R. Saglia and K. Tadaki at the Max Planck Institute for Extraterrestrial Physics (MPE), T.Naab at the Max Planck Institute for Astrophysics (MPA), R. Bender, A. Beifiori and D.Wilman at the University Observatory Munich, S. Wuyts at the University of Bath, T. Alexander at the Weizmann Institute of Science, G. Brammer at the Space Telescope Science Institute, C.M. Carollo and S. Tacchella at the ETH Zurich, S. Genel at the Center for Computational Astrophysics, I. Momcheva at Yale University, A. Renzini at the Astronomical Observatory of Padua, A. Sternberg at Tel Aviv University. KMOS was developed and built by a balanced consortium of UK (University of Durham, University of Oxford, UK Astronomy Technology Centre Edinburgh (ATC)) and German institutes (University Observatory Munich, Max Planck Institute for Extraterrestrial Physics) in partnership with the European Southern Observatory. Principal Investigators are Ray Sharples (University of Durham) and Ralf Bender (University Observatory Munich/Max Planck Institute for Extraterrestrial Physics).
Granada, Spain (SPX) Mar 15, 2017 Massive stars end their lives in supernova explosions, highly energetic events that can be as luminous as the entire starlight from their host galaxies. However, there are events called "supernova impostors" which, despite their intensity, are not the end of the star's life. This could very well be the case of SN 2015bh, a star which had suffered at least 21 years of violent eruptions and which, ... read more Related Links Max Planck Institute for Extraterrestrial Physics Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |