. 24/7 Space News .
EARLY EARTH
Discovery of new types of microfossils may answer an age-old scientific question
by Staff Writers
Sendai, Japan (SPX) Sep 07, 2022

"The newly found ones are more functional," said the leader of the team Kohei Sasaki, a research fellow at Tohoku University. "The ellipsoidal microfossils resemble modern cyanobacteria, which evolved to improve their tolerance to harsh environments; whereas chemical analysis showed that the ICI microfossils were packed with nutrients."

Scientists have long pondered how and when the evolution of prokaryotes to eukaryotes occurred. A collaborative research team from Tohoku University and the University of Tokyo may have provided some answers after discovering new types of microfossils dating 1.9 billion years.

Details of their findings were published in the journal Precambrian Research on August 19, 2022.

The Gunflint Formation traverses the northern part of Minnesota into Ontario, along the northwestern shores of Lake Superior. The first bacterial microfossils were discovered there in 1954, with Gunflint microfossils now recognized as a 'benchmark' in the field of life evolution.

Yet, since the 1970s, little research on the diversity of Gunflint microfossils has been conducted, and no conclusive evidence of eukaryotic microfossils has been reported.

Seeking to reassess the microfossils, the research team carried out a geological survey of the Gunflint Formation and collected microfossil-containing rocks. After investigating the microfossils' three-dimensional shape and size distribution, they unearthed five types of microfossils: colonial, ellipsoidal, intracellular inclusion-bearing (ICI), spinous and tail-bearing types.

"The newly found ones are more functional," said the leader of the team Kohei Sasaki, a research fellow at Tohoku University. "The ellipsoidal microfossils resemble modern cyanobacteria, which evolved to improve their tolerance to harsh environments; whereas chemical analysis showed that the ICI microfossils were packed with nutrients."

This evidences that the microorganisms evolved to store nutrients that could weather environmental stress.

Meanwhile, the spinous and tail-bearing types demonstrated features advantageous for motility and nutrient transfer among cells, a typical morphological feature of eukaryotes.

"Although the size of cells is prokaryote by definition, they had already developed eukaryotic functions," added Sasaki. This indicates that prokaryotes may have begun diversifying their functions and preparing for evolution before the emergence of eukaryotes 1.8 - 1.6 billion years ago.

The team speculates that the unique environment at the time facilitated the divergent expansion of microbial forms. The collision of land masses accelerated oxidative weathering from the fresh continent to the ocean. This increased the nutrient supplies and raised seawater temperatures, making the marine environment unstable.

"Under such conditions, microorganisms probably diversified their morphology as a survival strategy, paving the way for eukaryotes to evolve," continued Sasaki.

Sasaki and his team's landmark discovery will help scientists pinpoint the timing and factors that ushered in the evolution of prokaryotes to eukaryotes, providing not only geological significance, but aiding the fields of life sciences and evolutionary biology as well.

Research Report:Evolutionary Diversification of Paleoproterozoic Prokaryotes: New Microfossil Records in 1.88 Ga Gunflint Formation


Related Links
Tohoku University
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Ancient landslide destroyed area size of Cincinnati
Cincinnati OH (SPX) Sep 06, 2022
University of Cincinnati geologists reconstructed a massive landslide in Nevada that wiped out an area the size of a small city more than 5 million years ago. UC College of Arts and Sciences graduate Nick Ferry and UC assistant professor of geology Daniel Sturmer pieced together details of the Blue Diamond landslide, a natural disaster that sent rocks and boulders tumbling more than 6 miles across what is now a desert outside Las Vegas. The landslide in Red Rock Canyon National Conservation ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
NASA-funded technology helps relieve symptoms of menopause

US should end ISS collaboration with Russia

NASA, Axiom Space to launch second private astronaut mission to ISS in 2023

NASA repairs issue with Voyager 1 space probe

EARLY EARTH
NASA unsure next Moon rocket launch attempt possible this month

Teams continue to review options for next Artemis I launch attempt

ISRO demonstrates new technology with Inflatable Aerodynamic Decelerator

Rocket Lab completes first test fire of reused Rutherford Engine

EARLY EARTH
Everything is Dust in the Wind

Martian rock-metal composite shows potential of 3D printing on Mars

A vast and mysterious valley system in the southern Martian highlands

Perseverance Rover team's first results

EARLY EARTH
Rocket to carry Mengtian space lab module arrives at launch site

Duo undertake 7-hour spacewalk

Chinese scientist advocates int'l cooperation in space science

China's Shenzhou-14 astronauts carry out spacewalk

EARLY EARTH
SpaceX launches 51 Starlink satellites, orbital transfer vehicle

mu Space reveals a 10-Year Plan to build a Space Supply Chain in Thailand and Southeast Asia

Space tech: In Jilin, they build satellites

SpaceX and T-Mobile unveil satellite plan to end cellphone 'dead zones'

EARLY EARTH
Antenna enables advanced satellite communications testing

NASA awards LISA mission laser instrument contract

AFRL experiments with heat flow to manipulate quantum materials

Game on at Gamescom

EARLY EARTH
RIT scientists to study molecular makeup of planetary nebulae using radio telescopes

Astronomers show massive stars can steal Jupiter-sized planets

Webb Telescope takes its first-ever direct image of an exoplanet

VLBA produces first full 3-D view of binary star-planet system

EARLY EARTH
NASA's Juno Mission Reveals Jupiter's Complex Colors

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Uranus to begin reversing path across the night sky on Wednesday

Underwater snow gives clues about Europa's icy shell









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.