. 24/7 Space News .
EXO WORLDS
Astronomers show massive stars can steal Jupiter-sized planets
by Staff Writers
Sheffield UK (SPX) Sep 07, 2022

Artist's impression of a BEASTie. The image shows a gas giant planet (like Jupiter) on a distant orbit around a blue, massive star. The planet is likely to have been captured or stolen from another star. The background stars are members of the same star-forming region and could be the star the BEASTie was born around.

Jupiter-sized planets can be stolen or captured by massive stars in the densely populated stellar nurseries where most stars are born, a new study has found.

Researchers from the University of Sheffield have proposed a novel explanation for the recently discovered B-star Exoplanet Abundance STudy (BEAST) planets. These are Jupiter-like planets at large distances (hundreds of times the distance between the Earth and the Sun) from massive stars.

Until now their formation has been something of a mystery, as massive stars emit large amounts of ultraviolet radiation that stops planets from growing to the size of Jupiter - the largest planet in our solar system.

Dr Emma Daffern-Powell, Co-author of the study, from the University of Sheffield's Department of Physicsand Astronomy added: "Our previous research has shown that in stellar nurseries stars can steal planets from other stars, or capture what we call 'free-floating' planets. We know that massive stars have more influence in these nurseries than Sun-like stars, and we found that these massive stars can capture or steal planets - which we call 'BEASTies'.

"Essentially, this is a planetary heist. We used computer simulations to show that the theft or capture of these BEASTies occurs on average once in the first 10 million years of the evolution of a star-forming region."

Dr Richard Parker, Lecturer in Astrophysics in the University of Sheffield's Department of Physics and Astronomy explains: "The BEAST planets are a new addition to the myriad of exoplanetary systems, which display incredible diversity, from planetary systems around Sun-like stars that are very different to our Solar System, to planets orbiting evolved or dead stars

"The BEAST collaboration has discovered at least two super-Jovian planets orbiting massive stars. Whilst planets can form around massive stars, it is hard to envisage gas giant planets like Jupiter and Saturn being able to form in such hostile environments, where radiation from the stars can evaporate the planets before they fully form.

"However, our simulations show that these planets can be captured or stolen, on orbits very similar to those observed for the BEASTies. Our results lend further credence to the idea that planets on more distant orbits (more than 100 times the distance from Earth to Sun) may not be orbiting their parent star."

The research was conducted by Dr Richard Parker and Dr Emma Daffern-Powell at the University of Sheffield and is part of a larger research programme which aims to establish how common planetary systems like our own are in the context of the many thousands of other planetary systems in the Milky Way galaxy.

Research Report:Making BEASTies: dynamical formation of planetary systems around massive stars


Related Links
University of Sheffield
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
RIT scientists to study molecular makeup of planetary nebulae using radio telescopes
Rochester NY (SPX) Sep 06, 2022
By using radio telescopes to study sun-like stars in their death throes, scientists hope to reveal important information about the origin of life-enabling chemicals in the universe. The National Science Foundation is awarding a $339,362 Astronomy and Astrophysics Research Grant to a team led by Rochester Institute of Technology Professor Joel Kastner to conduct such a study. Planetary nebulae are the remnants of stars roughly one-to-eight times the size of the sun surrounded by hot gas lit up by u ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Harris talks with space station astronauts, introduces new initiatives

LeoLabs awarded contract from US Dept of Commerce to support space traffic management prototype

US should end ISS collaboration with Russia

NASA-funded technology helps relieve symptoms of menopause

EXO WORLDS
SpaceX launches 34 more Starlink satellites, AST SpaceMobile satellite

Why do we always need to wait for launch windows to get a rocket to space

Teams continue to review options for next Artemis I launch attempt

Ariane 5 launches EUTELSAT KONNECT VHTS satellite

EXO WORLDS
Glaciers flowed on ancient Mars, but slowly

Martian rock-metal composite shows potential of 3D printing on Mars

Everything is Dust in the Wind

A vast and mysterious valley system in the southern Martian highlands

EXO WORLDS
Rocket to carry Mengtian space lab module arrives at launch site

Duo undertake 7-hour spacewalk

Chinese scientist advocates int'l cooperation in space science

China's Shenzhou-14 astronauts carry out spacewalk

EXO WORLDS
Iridium announces 9th SpaceX launch

OneWeb and HD Hyundai Avikus to advance marine technology by unlocking the potential of LEO connectivity

Could Ukraine become a strong ally ESA has been looking for

Thales Alenia Space Partners With Kythera Space Solutions for Advanced Space Inspire Mission Segment Software

EXO WORLDS
Antenna enables advanced satellite communications testing

Ocean lidar remote sensing technology based on Brillouin scattering spectrum

NASA awards LISA mission laser instrument contract

Recycling firm battles Jakarta's plastic waste emergency

EXO WORLDS
RIT scientists to study molecular makeup of planetary nebulae using radio telescopes

Astronomers show massive stars can steal Jupiter-sized planets

Two new rocky worlds around an ultra-cool star

SPECULOOS discovers a potentially habitable super-Earth

EXO WORLDS
NASA's Juno Mission Reveals Jupiter's Complex Colors

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Uranus to begin reversing path across the night sky on Wednesday

Underwater snow gives clues about Europa's icy shell









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.