. 24/7 Space News .
AFRL experiments with heat flow to manipulate quantum materials
by Jamie Leigh Cooper for AFRL News
Wright Patterson AFB OH (SPX) Sep 02, 2022

Scientists experiment with phonons at room temperature in the Air Force Research Laboratory's Quantum Photonics Laboratory, part of AFRL's Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio. (U.S. Air Force photo / Micah Hung)

The Air Force Research Laboratory, or AFRL, Nano Electronic Materials Branch, part of the Materials and Manufacturing Directorate, used heat flow experiments to manipulate quantum materials into functioning in new and different ways at higher temperatures.

"The question we're exploring in our lab is, what are the limits of cryogenic-free phonon engineering for shielding delicate quantum systems from the noisy thermal environment?" said Dr. Chandriker Kavir Dass, AFRL researcher.

Quantum information science is a research field involving the generation, manipulation and measurement of quantum systems such as single atoms, atomic defects in solid-state crystalline materials or superconducting electronic circuits. AFRL researchers are particularly interested in solid-state quantum science, a field that explores quantum physics in crystalline materials such as 2D materials, silicon carbide and diamond - innovative materials with large potential for future technologies. However, working with the quantum systems in these solid-state platforms is complicated, especially at room temperature.

To remove the influence of the phonons on quantum systems at higher temperatures, AFRL researchers are exploring manipulations of material structure and internal strain to reflect, absorb or "freeze out" the lattice vibrations from disrupting the sensitive quantum systems.

"Much like a sound engineer will acoustically isolate a room to eliminate noise in the recording, or a guitarist will tension a guitar string to select for a particular frequency while freezing out lower frequencies, we are exploring these same ideas in quantum systems," Kavir said.

At room temperature, the atoms that make up these materials vibrate violently, creating what we know as heat and sound within the material lattice. In the scientific language, these vibrations are known as phonons. Phonons can quickly destroy delicate quantum systems within the host material, so researchers typically cool materials down to very low temperatures in order to avoid these issues.

Maintaining a cold environment requires bulky, power-hungry equipment unsuitable for many potential applications within the Department of the Air Force, or DAF. In response to this problem, AFRL researchers are looking for a solution.

Researchers are experimenting with 2D materials like graphene and other 2D materials that can handle large amounts of strain before breaking. An area of particular interest is nano/micro electromechanical systems, or NEMS/MEMS. Found in everything from phones and cars to navigation systems and game controllers, these devices are universal, but researchers want to exploit quantum physics and improve these technologies.

Within the NEMS/MEMS field, there is an effort to push the operating frequencies up by scaling devices down or tensioning the vibrating elements. By pushing the operating frequencies high enough the thermal noise is effectively "frozen out" and it becomes possible to operate these devices in a quantum regime without the need to cool them down to low temperatures. In the last year, AFRL has invested in the understanding and engineering of phonon dynamics in quantum systems with the goal of enabling quantum technologies that operate at room temperature.

"If we can control and exploit how quantum systems interact with the surrounding environment, we can increase the system's operating temperature," said Dr. Robert Bedford, AFRL researcher. "This will strongly impact the suitability of quantum sensing, network and timing in DAF-relevant environments and make large impacts in terrestrial and space applications."

Related Links
Air Force Research Laboratory
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Digging through patents to make mining greener
Fukuoka, Japan (SPX) Sep 01, 2022
As the world confronts the ongoing climate crisis, moving to greener technology has become a requirement in every facet of our lives. Naturally, industries critical to our daily lives are also moving to integrate such technology into their operations. All of these depend in some way on the industry that extracts and processes the raw materials used to make most green technologies: the mining industry. But the economic and policy factors that drive the mining sector to become more sustainable remai ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NASA, Axiom Space to launch second private astronaut mission to ISS in 2023

NASA repairs issue with Voyager 1 space probe

NASA awards contract to demonstrate trash compacting system for ISS

Boeing eyes February for space capsule's first crewed flight

China launches new test satellites via Kuaizhou 1A carrier rocket

NASA Moon rocket ready for second attempt at liftoff

NASA says weather, SLS rocket look good for Artemis I launch on Saturday

NASA scrubs launch of giant Moon rocket, may try again Friday

MIT's MOXIE experiment reliably produces oxygen on Mars

An Unexpected Stop during Sols 3580-3581

MAVEN and EMM make first observations of patchy proton aurora at Mars

A Whole New World - Sols 3578-3579

Plant growth in China's space lab in good condition

Energy particle detector helps Shenzhou-14 crew conduct EVAs

China conducts spaceplane flight test

103rd successful rocket launch breaks record

mu Space reveals a 10-Year Plan to build a Space Supply Chain in Thailand and Southeast Asia

Space tech: In Jilin, they build satellites

SpaceX and T-Mobile unveil satellite plan to end cellphone 'dead zones'

Introducing Huginn

NASA awards LISA mission laser instrument contract

AFRL experiments with heat flow to manipulate quantum materials

Game on at Gamescom

Steel sector cracks on Ukraine, energy price spikes

JWST makes first unequivocal detection of carbon dioxide in an exoplanet atmosphere

An extrasolar world covered in water

Webb detects carbon dioxide in exoplanet atmosphere

Webb telescope finds CO2 for first time in exoplanet atmosphere

NASA's Juno Mission Reveals Jupiter's Complex Colors

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Uranus to begin reversing path across the night sky on Wednesday

Underwater snow gives clues about Europa's icy shell

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.