. | . |
Detecting hydrogen using the extraordinary hall effect in cobalt-palladium thin films by Staff Writers Moscow, Russia (SPX) Sep 13, 2018
Researchers looking to hydrogen as a next-generation clean energy source are developing hydrogen-sensing technologies capable of detecting leaks in hydrogen-powered vehicles and fueling stations before the gas turns into an explosion. The most common type of hydrogen sensors is composed of palladium-based thin films because palladium (Pd), a silvery-white metal resembling platinum, readily absorbs hydrogen gas. However, Pd also readily absorbs other gases, decreasing the overall efficiency of these sensors. Alexander Gerber's research team at Tel Aviv University recently conducted a systematic study of hydrogen detection using the Extraordinary Hall Effect (EHE) to measure the hydrogen magnetization response in cobalt-palladium (CoPd) thin films. The team reports the findings in the Journal of Applied Physics, from AIP Publishing. "We found that detection of hydrogen by EHE really works with very high sensitivity," said Alexander Gerber, an author on the paper. "A goal would be to develop a compact EHE device compatible with a standard four-probe resistance measuring method to enhance gas detection through a magnetic type of sensor using the spintronics effect." The burgeoning field of spintronics exploits an electron's spin and its resulting magnetic properties. In essence, EHE is a spin-dependent phenomenon that generates voltage proportional to magnetization across a current-carrying magnetic film. Otherwise known as the anomalous Hall effect, EHE occurs in ferromagnetic materials and can be much larger than the ordinary Hall effect. Although palladium has high hydrogen absorption capacity, it's not ferromagnetic by itself. So, the researchers added cobalt, a ferromagnetic material whose magnetic properties are affected by the hydrogen absorption in CoPd alloys to induce EHE. The researchers prepared four sets of samples with thicknesses of 7, 14, 70 and 100 nanometers with varying cobalt concentrations and tested them in an atmosphere with different levels of hydrogen up to 4 percent. They found that the thinnest films demonstrated the largest absolute response to hydrogen: The signal changes by more than 500 percent per 1 percent of hydrogen. "In practical terms, we identified the sensitive range of compositions, how the response to hydrogen depends on composition, and what the options are to operate the sensor," Gerber said. Gerber's research team is now in the process of recording response times and exploring the ability to release hydrogen after exposure so sensors can be reused. The researchers also plan to explore ways to improve selectivity of hydrogen and adapt their technique for selective detection of other gases.
Research Report: "Detection of hydrogen by the extraordinary Hall effect in CoPd alloys"
Diamond dust enables low-cost, high-efficiency magnetic field detection Berkeley CA (SPX) Sep 11, 2018 UC Berkeley engineers have created a device that dramatically reduces the energy needed to power magnetic field detectors, which could revolutionize how we measure the magnetic fields that flow through our electronics, our planet, and even our bodies. "The best magnetic sensors out there today are bulky, only operate at extreme temperatures, and can cost tens of thousands of dollars," said Dominic Labanowski, who helped create the device, which is made from nitrogen-infused diamonds, as a postdoct ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |