. 24/7 Space News .
CARBON WORLDS
Creation of the most perfect graphene
by Staff Writers
Daejeon, South Korea (SPX) Aug 26, 2021

(a, b) SEM images and (c) AFM phase image of graphene folds in an adlayer-free single-crystal graphene film on a Cu(111) foil. (d) Schematic of the mechanism of graphene folds formation during the cooling process.

A team of researchers led by Director Rod Ruoff at the Center for Multidimensional Carbon Materials (CMCM) within the Institute for Basic Science (IBS), including graduate students at the Ulsan National Institute of Science and Technology (UNIST), have achieved growth and characterization of large area, single-crystal graphene that has no wrinkles, folds, or adlayers. It can be said to be the most perfect graphene that has been grown and characterized, to date.

Director Ruoff notes, "This pioneering breakthrough was due to many contributing factors, including human ingenuity and the ability of the CMCM researchers to reproducibly make large-area single-crystal Cu-Ni(111) foils, on which the graphene was grown by chemical vapor deposition (CVD) using a mixture of ethylene with hydrogen in a stream of argon gas." Student Meihui Wang, Dr. Ming Huang, and Dr. Da Luo along with Ruoff undertook a series of experiments of growing single-crystal and single-layer graphene on such 'home-made' Cu-Ni(111) foils under different temperatures.

The team had previously reported single-crystal and adlayer-free films of graphene which were grown using methane at temperatures of ~1320 Kelvin (K) degrees on Cu(111) foils. Adlayers refer to small "islands" of regions that have another layer of graphene present. However, these films always contained long "folds" that are the consequence of tall wrinkles that form as the graphene is cooled from the growth temperature down to room temperature. This results in an undesirable reduction in the performance of graphene field effect transistor (GFET) if the "fold" is in the active region of the GFET. The folds also contain "cracks" that lower the mechanical strength of the graphene.

The next exciting challenge was thus eliminating these folds.

CMCM researchers first implemented a series of 'cycling' experiments that involved "cycling" the temperature immediately after growing the graphene at 1320 K. These experiments showed that the folds are formed at or above 1020 K during the cooling process. After learning this, the team decided to grow graphene on Cu-Ni(111) foils at several different temperatures around 1020 K, which led to a discovery that large-area, high-quality, fold-free, and adlayer-free single-crystal graphene films can be grown in a temperature range between 1000 K and 1030 K.

"This fold-free graphene film forms as a single crystal over the entire growth substrate because it shows a single orientation over a large-area low-energy electron diffraction (LEED) patterns," noted SEONG Won Kyung, a senior research fellow in CMCM who installed the LEED equipment in the center. GFETs were then patterned on this single-crystal fold-free graphene in a variety of directions by UNIST graduate student Yunqing Li. These GFETs showed remarkably uniform performance with average room temperature electron and hole mobilities of 7.0 +/- 1.0 + 103 cm2 V-1 s-1. Li notes, "Such remarkably uniform performance is possible because the fold-free graphene film is a single crystal with essentially no imperfections."

Importantly, the research team was able to achieve "scaling up" of graphene production using this method. The graphene was successfully grown on 5 foils (dimension 4 cm x 7 cm) simultaneously in a 6-inch diameter home-built quartz furnace. "Our method of growing fold-free graphene films is very reproducible, with each foil yielding two identical pieces of high-quality graphene films on both sides of the foil," and "By using the electrochemical bubbling transfer method, graphene can be delaminated in about 1 minute and the Cu-Ni(111) foil can be quickly readied for the next growth/transfer cycle," notes Meihui Wang. Ming Huang adds, "When we tested the weight loss of Cu-Ni(111) foils after 5 runs of growth and transfers, the net loss was only 0.0001 grams. This means that our growth and transfer methods using the Cu-Ni(111) can be performed repeatedly, essentially indefinitely."

In the process of achieving fold-free single-crystal graphene, the researchers also discovered the reasons behind the formation of these folds. High-resolution TEM imaging was performed by student CHOE Myeonggi and Prof. LEE Zonghoon (a group leader in CMCM and professor at UNIST) to observe the cross-sections of the samples grown above 1040 K. They discovered that the deadhesion, which is the cause of the folds, is initiated at the "bunched step edge" regions between the single crystal Cu-Ni(111) plateaus.

"This deadhesion at the bunched step edge regions triggers the formation of graphene folds perpendicular to the step edge direction", noted co-corresponding author Luo. Ruoff further notes that "We discovered that step-bunching of a Cu-Ni(111) foil surface suddenly occurs at about 1030 K, and this 'surface reconstruction' is the reason why the critical growth temperature of fold-free graphene is at ~1030 K or below".

Such large-area fold-free single-crystal graphene film allows for the straightforward fabrication of integrated high-performance devices oriented in any direction over the entire graphene film. These single-crystal graphene films will be important for further advances in basic science, which will lead to new applications in electronic, photonic, mechanical, thermal, and other areas. The near-perfect graphene is also useful for stacking, either with itself and/or with other 2D materials, to further expand the range of likely applications. Given that the Cu-Ni(111) foils can be used repeatedly and that the graphene can be transferred to other substrates in less than one minute, the scalable manufacturing using this process is also highly promising.

A further interesting aspect of this article is that it includes Nature's "Transparent Peer Review" document, so that readers may read through the reviewer comments and author rebuttals to also "observe" the process of scientific review. The paper went through two cycles of review and thus three revisions of the main text and the Supplemental Information document prior to being accepted. When the review process "works well", reviewers offer useful comments and questions that the authors can then ponder and try to answer. Ruoff and Luo noted that "We dived back into our labs at the CMCM and really worked hard to respond to the reviewer comments and also to tackle other interesting aspects of the science during the 6-month time between our originally submitted manuscript to Nature, and its acceptance after 3 rounds of revision."

Ruoff further notes "We have had some really bad experiences with review processes in the last few years with unprofessional/improper behavior by reviewers and even handling editors, including at some very "famous" journals. This was like a huge breath of fresh air for us after these really horrible and negative experiences- we got professional reviews and the entire review experience was professional in all regards. One data point is not a statistical survey, but if the "Transparent Peer Review" played a role in achieving this proper level of professionalism then other journals might want to consider it."

"Single Crystal, Large-area, Fold-free Monolayer Graphene"


Related Links
Institute For Basic Science
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Which products are best suited for emerging carbon capture technologies
Ann Arbor MI (SPX) Aug 25, 2021
Pulling heat-trapping carbon dioxide out of the air and turning it into useful products, a concept called carbon capture and utilization, has the potential to offer both environmental and economic benefits. By some optimistic estimates, CCU could generate annual revenues of more than $800 billion by 2030 while reducing climate-altering carbon dioxide emissions by up to 15%. Captured CO2 could potentially be used to make concrete and other building materials, fuels, plastics, and various chemicals ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
State of Russia's ISS segment sparks safety concerns

NASA welcomes new Russian commitment to space station

US grounds Virgin Galactic after trajectory issue

ESA at the 36th Space Symposium

CARBON WORLDS
Firefly Aerospace rocket Alpha explodes after California liftoff

Inspiration4 crew will conduct health research during three day mission

Application of fission-powered spacecraft in solar system exploration missions

DLR Lampoldshausen prepares P5 test stand for the technologies of the future

CARBON WORLDS
NASA plans yearlong Mars simulation to test limits of isolation

NASA's Perseverance Rover obtains first rock core

NASA's Mars simulation hopefuls face tough application process

The forecast for Mars? Otherworldly weather predictions

CARBON WORLDS
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

CARBON WORLDS
World-leading space venture capital firm announces idea-stage incubator

Roscosmos offered ESA extended use of Soyuz In French Guiana

NASA works to give satellite swarms a hive mind

Space science project funding available for UK space projects

CARBON WORLDS
D-Orbit signs with HyImpulse Technologies for EU mission

NASA's Deep Space Network looks to the future

3D-printed lunar floor

New augmented reality applications assist astronaut repairs to Space Station

CARBON WORLDS
Cold planets exist throughout our Galaxy, even in the Galactic bulge

New class of habitable exoplanets are 'a big step forward' in the search for life

Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

CARBON WORLDS
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.