. 24/7 Space News .
SHAKE AND BLOW
Could underwater sound waves be the key to early tsunami warnings?
by Staff Writers
Cardiff UK (SPX) Jan 29, 2018


illustration only

Mathematicians have devised a way of calculating the size of a tsunami and its destructive force well in advance of it making landfall by measuring fast-moving underwater sound waves, opening up the possibility of a real-time early warning system.

The sound waves, known as acoustic gravity waves (AGWs), are naturally occurring and can be generated in the deep ocean after tsunami trigger events, such as underwater earthquakes.

They can travel over 10 times faster than tsunamis and spread out in all directions, regardless of the trajectory of the tsunami, making them easy to pick up using standard underwater hydrophones and an ideal source of information for early warning systems.

In a new study published in the Journal of Fluid Mechanics, scientists from Cardiff University have shown how the key characteristics of an earthquake, such as its location, duration, dimensions, orientation, and speed, can be determined when AGWs are detected by just a single hydrophone in the ocean.

More importantly, once the fault characteristics are found, calculating the tsunami amplitude and potential destructive force becomes more trivial, the researchers state.

Lead author of the study Dr Usama Kadri, from Cardiff University's School of Mathematics, said: "By taking measurements of acoustic gravity waves, we basically have everything we need to set off a tsunami alarm." Underwater earthquakes are triggered by the movement of tectonic plates on the ocean floor and are the main cause of tsunamis.

Tsunamis are currently detected via dart buoys - floating devices that are able to measure pressure changes in the ocean caused by tsunamis. However, the technology relies on a tsunami physically reaching the dart buoys, which could be problematic if the buoys are close to the shoreline.

The current technology also requires the distribution of a huge number of buoys in oceans all around the world, which is very costly.

"Though we can currently measure earthquakes using seismic sensors, these do not tell us if tsunamis are likely to follow," Dr Kadri continued.

"Using sound signals in the water, we can identify the characteristics of the earthquake fault, from which we can then calculate the characteristics of a tsunami. Since our solution is analytical, everything can be calculated in near real-time.

"Our aim is to be able to set off a tsunami alarm within a few minutes from recording the sound signals in a hydrophone station."

AGWs are naturally occurring sounds waves that move through the deep ocean at the speed of sound and can travel thousands of metres below the surface.

AGWs can measure tens or even hundreds of kilometres in length and it is thought that certain lifeforms such as plankton, that are unable to swim against a current, rely on the waves to aid their movement, enhancing their ability to find food.

SHAKE AND BLOW
Seafloor sediments appear to enhance Earthquake and Tsunami danger in Pacific Northwest
Austin TX (SPX) Dec 05, 2017
The Cascadia Subduction Zone off the coast of the Pacific Northwest has all the ingredients for making powerful earthquakes - and according to the geological record, the region is due for its next "big one." A new study led by The University of Texas at Austin has found that the occurrence of these big, destructive quakes and associated devastating tsunamis may be linked to compact sedimen ... read more

Related Links
Cardiff University
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
S. Korea's Chinese tourist slump endures despite pledges

Europe brings on charm and blue skies to lure Chinese tourists

Macron 'completely changed' France's image, says tech billionaire

Chinese, Russians shore up Middle East tourism

SHAKE AND BLOW
Aerojet Rocketdyne RS-25 test advances exploration efforts

Arianespace to launch SES-14 and Al Yah 3 for SES and Yahsat

NASA picks up where it left off in 2017, tests RS-25 Flight Controller

Aerojet Rocketdyne Supports ULA Launch in Support of National Security

SHAKE AND BLOW
New technique for finding life on Mars

Next Mars Analog mission will help improve efficiency and reduce dust exposure

Deep, buried glaciers spotted on Mars

Opportunity takes right at the fork and has successful battery test

SHAKE AND BLOW
China to launch first student satellite for scientific education

Scientist reveals what is so special about Chines's next moon mission

China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

SHAKE AND BLOW
Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

SES-15 Enters Commercial Service to Serve the Americas

SHAKE AND BLOW
Scientists achieve high power with new smaller laser

Self-healing fungi concrete could provide sustainable solution to crumbling infrastructure

Quantum control

Ultra-thin memory storage device paves way for more powerful computing

SHAKE AND BLOW
Viruses are everywhere, maybe even in space

Rutgers scientists discover 'Legos of life'

NASA study shows disk patterns can self-generate

Hubble finds substellar objects in the Orion Nebula

SHAKE AND BLOW
JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.