. | . |
Could interstellar ice provide the answer to birth of DNA by Staff Writers York UK (SPX) Sep 15, 2017
Researchers at the University of York have shown that molecules brought to earth in meteorite strikes could potentially be converted into the building blocks of DNA. They found that organic compounds, called amino nitriles, the molecular precursors to amino acids, were able to use molecules present in interstellar ice to trigger the formation of the backbone molecule, 2-deoxy-D-ribose, of DNA. It has long been assumed that amino acids were present on earth before DNA, and may have been responsible for the formation of one of the building blocks of DNA, but this new research throws fresh doubt on this theory. Dr Paul Clarke, from the University of York's Department of Chemistry, said: "The origin of important biological molecules is one of the key fundamental questions in science. The molecules that form the building blocks of DNA had to come from somewhere; either they were present on Earth when it formed or they came from space, hitting earth in a meteor shower. "Scientists had already shown that there were particular molecules present in space that came to Earth in an ice comet; this made our team at York think about investigating whether they could be used to make one of the building blocks of DNA. If this was possible, then it could mean that a building block of DNA was present before amino acids." In order for cellular life to emerge and then evolve on earth, the fundamental building blocks of life needed to be synthesised from appropriate starting materials - a process sometimes described as 'chemical evolution'. The research team showed that amino nitriles could have been the catalyst for bringing together the interstellar molecules, formaldehyde, acetaldehyde, glycolaldehyde, before life on Earth began. Combined, these molecules produce carbohydrates, including 2-deoxy-D-ribose, the building blocks of DNA. DNA is one of the most important molecules in living systems, yet the origin 2-deoxy-D-ribose, before life on earth began, has remained a mystery. Dr Clarke said: "We have demonstrated that the interstellar building blocks formaldehyde, acetaldehyde and glycolaldehyde can be converted in 'one-pot' to biologically relevant carbohydrates - the ingredients for life. "This research therefore outlines a plausible mechanism by which molecules present in interstellar space, brought to earth by meteorite strikes, could potentially be converted into 2-deoxy-D-ribose, a molecule vital for all living systems."
Rochester NY (SPX) Sep 12, 2017 In February NASA astronomers discovered - seven Earth-like planets, potentially harboring life, orbiting the star TRAPPIST-1, not too far from Earth. Scientists have yet to discover life, or evidence of civilizations, on these or other planets. But in the search for extra-terrestrial intelligence, they often categorize hypothetical worlds according to the amount of energy their inhabitants ... read more Related Links University of York Lands Beyond Beyond - extra solar planets - news and science Life Beyond Earth
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |