. | . |
New microscopy method for quick and reliable 3-D imaging of curvilinear nanostructures by Staff Writers Lausanne, Switzerland (SPX) Sep 07, 2017
Physical and biological sciences increasingly require the ability to observe nano-sized objects. This can be accomplished with transmission electron microscopy (TEM), which is generally limited to 2D images. Using TEM to reconstruct 3D images instead usually requires tilting the sample through an arc to image hundreds of views of it and needs sophisticated image processing to reconstruct their 3D shape, creating a number of problems. Now, EPFL scientists have developed a scanning transmission electron microscopy (STEM) method that generates fast and reliable 3D images of curvilinear structures from a single sample orientation. The work is published in Scientific Reports. The labs of Cecile Hebert and Pascal Fua at EPFL have developed an electron microscopy method that can obtain 3D images of complex curvilinear structures without needing to tilt the sample. The technique, developed by EPFL researcher Emad Oveisi, relies on a variation of TEM called scanning TEM (STEM), where a focused beam of electrons scans across the sample. The novelty of the method is that it can acquire images in a single shot, which opens the way to study samples dynamically as they change over time. Furthermore, it can rapidly provide a "sense" of three dimensions, just like we would have with a 3D cinema. "Our own eyes can see 3D representations of an object by combining two different perspectives of it, but the brain still has to complement the visual information with its previous knowledge of the shape of certain objects," says Hebert. "But in some cases with TEM we know something about what shape the sample's structure must have. For example, it can be curvilinear, like DNA or the mysterious defects that we call 'dislocations', which govern the optoelectronic or mechanical properties of materials."
The classical approach A way around this problem is to acquire consecutive images while rotating the specimen through a tilt arc. The images can then be reconstructed on a computer to gain a 3D representation of the sample. The problem with this approach is that it requires extreme precision on hundreds of images, which is hard to achieve. The 3D images generated in this way are also prone to artefacts, which are difficult to remove afterwards. Finally, taking multiple images with TEM requires shooting a beam of electrons though the sample each time, and the total dose can actually affect the sample's structure during acquisition and produce a false or corrupted image.
The new approach The team also used a sophisticated image-processing algorithm, developed in collaboration with Fua's CVlab, to reduce the number of images needed for 3D reconstruction to only two images taken at different electron beam angles. This increases the efficiency of data acquisition and 3D reconstruction by one to two orders of magnitude compared to conventional TEM 3D techniques. At the same time, it prevents structural changes on the sample due to high electron doses. Because of its speed and immunity to problems with standard TEM methods, this "tilt-less 3D electron imaging" method is of great advantage for studying radiation-sensitive, polycrystalline, or magnetic materials. And because the total electron dose is reduced to a single scan, the method is expected to open up new avenues for real-time 3D electron imaging of dynamic material and biological processes. Emad Oveisi, Antoine Letouzey, Duncan T.L. Alexander, Quentin Jeangros, Robin Schaublin, Guillaume Lucas, Pascal Fua, Cecile Hebert. Tilt-less 3-D electron imaging and reconstruction of complex curvilinear structures. Scientific Reports, 06 September 2017. DOI: 10.1038/s41598-017-07537-6
Washington DC (SPX) Aug 31, 2017 Within the past decade, 3-D printers have gone from bulky, expensive curiosities to compact, more affordable consumer products. At the same time, concerns have emerged that nanoparticles released from the machines during use could affect consumers' health. Now researchers report in ACS' Environmental Science and Technology a way to eliminate almost all nanoparticle emissions from some of these p ... read more Related Links Ecole Polytechnique Federale de Lausanne Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |