. | . |
Cooling by laser beam by Staff Writers Trieste, Italy (SPX) Jun 11, 2018
A laser pulse that for a few picoseconds - i.e. one millionth of one millionth of a second- transforms a material into a high-temperature superconductor. Different experiments have unveiled this interesting phenomenon, with potential applicative implications. Research carried out by SISSA scientists a year ago had already provided several basic principles of the phenomenon. A new study published on Physical Review Letters now clarifies other important aspects. It is a well-known fact that light heats. This seems to be an obvious observation; in actual fact this is correct only for sufficiently long times, much longer than those in which photo-induced superconductivity has been observed, and in which the quantum effects of light-matter interaction become relevant, with particular reference to the fact that light is absorbed in a highly selective manner. What SISSA scientists have explained with their new study is that in the very short space of time in which it acts, the laser pulse can, in some circumstances, populate high-energy states, which heat up, and simultaneously depopulate low energy ones, which thus cool down. It is precisely the latter that are responsible for superconductivity. This selective cooling, shown rigorously in a very simplified theoretical model, could explain not only the experimental observations, but also open the way to new and potentially important research activities. The ultra-short control of materials by light is a topic that attracts the interests of the scientific community, and others, in the perspective of building electronic devices whose physical properties, for example the ability to conduct electricity, could change with the application of a laser pulse, which, therefore, would effectively play the role of an ultra-fast switch.
Novel power meter opens the door for in-situ, real-time monitoring of high-power lasers Orlando, FL (SPX) May 31, 2018 High-power lasers are now widely used in additive manufacturing and laser welding systems to precisely cut and weld metal, making all kinds of metal parts for medical devices, aerospace applications, automotive industries, and more. With the rise in industrial use of high-power laser processing, manufacturers increasingly seek high-accuracy, point-of-use laser power meters that can quickly report laser powers at any time in the manufacturing process - a vital aspect to controlling product quality. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |