. 24/7 Space News .
EXO WORLDS
How microbes survive clean rooms and contaminate spacecraft
by Staff Writers
Pomona CA (SPX) Jun 03, 2018

file image only

Spacecraft assembly facilities harbor a low but persistent amount of biological contamination despite the use of clean rooms.

Rakesh Mogul, a Cal Poly Pomona professor of biological chemistry, was the lead author of an article in the journal Astrobiology that offers the first biochemical evidence explaining the reason the contamination persists.

Chemistry professor Gregory A. Barding, Jr., was a collaborator and second author on the paper. The remaining 22 coauthors are all Cal Poly Pomona students - 14 undergraduates in chemistry, three chemistry graduate students and five undergraduates in biological sciences.

"We designed the project to give students hands-on experience - and to support the learn-by-doing philosophy of Cal Poly Pomona. The students did the research, mostly as thesis projects in the areas of enzymology, molecular microbiology and analytical chemistry," said Mogul.

In the clean room facilities, NASA implements a variety of planetary protection measures to minimize biological contamination of spacecraft. These steps are important because contamination by Earth-based microorganisms could compromise life-detection missions by providing false positive results.

Despite extensive cleaning procedures, however, molecular genetic analyses show that the clean rooms harbor a diverse collection of microorganisms, or a spacecraft microbiome, that includes bacteria, archaea and fungi, explained Mogul. The Acinetobacter, a genus of bacteria, are among the dominant members of the spacecraft microbiome.

To figure out how the spacecraft microbiome survives in the cleanroom facilities, the research team analyzed several Acinetobacter strains that were originally isolated from the Mars Odyssey and Phoenix spacecraft facilities.

They found that under very nutrient-restricted conditions, most of the tested strains grew on and biodegraded the cleaning agents used during spacecraft assembly. The work showed that cultures grew on ethyl alcohol as a sole carbon source while displaying reasonable tolerances towards oxidative stress. This is important since oxidative stress is associated with desiccating and high radiation environments similar to Mars.

The tested strains were also able to biodegrade isopropyl alcohol and Kleenol 30, two other cleaning agents commonly used, with these products potentially serving as energy sources for the microbiome.

"We're giving the planetary protection community a baseline understanding of why these microorganisms remain in the clean rooms," said Mogul. "There's always stuff coming into the clean rooms, but one of the questions has been why do the microbes remain in the clean rooms, and why is there a set of microorganisms that are common to the clean rooms."

For planetary protection, this indicates that more stringent cleaning steps may be needed for missions focused on life detection and highlights the potential need to use differing and rotating cleaning reagents that are compatible with the spacecraft to control the biological burden.

"Metabolism and Biodegradation of Spacecraft Cleaning Reagents by Strains of Spacecraft-Associated Acinetobacter," Rakesh Mogul et al., 2018 Apr. 19, Astrobiology


Related Links
California State Polytechnic University, Pomona
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
A simple mechanism could have been decisive for the development of life
Munich, Germany (SPX) May 28, 2018
The question of the origin of life remains one of the oldest unanswered scientific questions. A team at the Technical University of Munich (TUM) has now shown for the first time that phase separation is an extremely efficient way of controlling the selection of chemical building blocks and providing advantages to certain molecules. Life needs energy. Without energy, cells cannot move or divide, not even basic functions such as the production of simple proteins could be maintained. If energy is lac ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Trio reach Earth from ISS with football slated for World Cup

NASA selects US companies to advance space resource collection

NASA, Space Station Partners Announce Future Mission Crew Members

Breath of Life: Russia Working on System to Turn Cosmonauts' Breath Into Water

EXO WORLDS
Commercial satellite launch service market to grow strongly through 2024

Arianespace and ISIS to launch small satellites on the Vega SSMS POC flight

Gilmour Space prepares for suborbital hybrid rocket launch

Watch live: SpaceX to launch SES-12 communications satellite

EXO WORLDS
Opportunity Mars rover ready to study rock targets up close

New image shows exposed bedrock in Hale Crater on Mars

Embry-Riddle Student is Helping NASA Prepare for Trips to Mars

Red Planet rover set for extreme environment workout

EXO WORLDS
Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

China's Queqiao satellite carries "large umbrella" into deep space

EXO WORLDS
NASA Selects Small Business Technology Awards

Gogo and Iridium Partner to Deliver Best-in-Class Aircraft Connectivity

From ships to satellites: Scotland aims for the sky

Iridium Makes Maritime Industry History

EXO WORLDS
Scientists discover new magnetic element

Firing up a new alloy

Space Traffic Management - Oversight, Licensing And Enforcement

Zn-InsP6 complex can enhance excretion of radioactive strontium from the body

EXO WORLDS
Distant moons may harbor life

NASA Dives Deep into the Search for Life

How microbes survive clean rooms and contaminate spacecraft

A simple mechanism could have been decisive for the development of life

EXO WORLDS
'Surprising' methane dunes found on Pluto

Scientists reveal the secrets behind Pluto's dunes

Pluto may be giant comet made up of comets, study says

SwRI scientists introduce cosmochemical model for Pluto formation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.