. 24/7 Space News .
TECH SPACE
Novel power meter opens the door for in-situ, real-time monitoring of high-power lasers
by Staff Writers
Orlando, FL (SPX) May 31, 2018

This mirror is a force scale that relates the force of a laser shining on it to the power (i.e., the brightness) of that laser. Scientists at NIST are developing these devices to embed into laser-based manufacturing tools for improved performance and reliability. The device in this picture is a prototype of their capacitive pressure sensor designed to measure 1,000 W lasers in the infrared with better than 1% uncertainty. The next phase of devices like this one will be standard reference instruments that report absolute power of any color laser from 1 mW up to 100 kW of power.

High-power lasers are now widely used in additive manufacturing and laser welding systems to precisely cut and weld metal, making all kinds of metal parts for medical devices, aerospace applications, automotive industries, and more.

With the rise in industrial use of high-power laser processing, manufacturers increasingly seek high-accuracy, point-of-use laser power meters that can quickly report laser powers at any time in the manufacturing process - a vital aspect to controlling product quality. Traditional laser power meters, however, are often bulky in size and slow in response time. Power measurements can also only be taken separately, interrupting the manufacturing process.

Now, a group of researchers from National Institute of Standards and Technology (NIST) in Boulder, Colorado, have developed a smaller, faster and more sensitive laser power meter in the form of a folding mirror they call a "smart mirror." The novel design uses a capacitor-based force transducer and merges optical elements, namely a high reflectivity mirror, and sensing elements into a compact cube package.

The four-centimeter-on-a-side cubes can be conveniently embedded into laser optical systems or laser-welding systems for point-of-use, real-time laser power measurement and calibration. The researchers will present their innovation at the OSA Imaging and Applied Optics Congress, being held June 25-28 in Orlando, Florida, United States.

"Measuring laser power by measuring the pressure of a laser beam hitting a mirror is a very unique technique, [and] so far it is the only laser power measurement technique that is truly an in-situ process," said Alexandera B. Artusio-Glimpse, a scientist of NIST in Boulder, Colorado, and the primary author. "Unlike any other optical power measurement techniques, our method allows us to continue using the laser for work while a measurement is being taken."

Artusio-Glimpse explained that traditional high-power meters measure laser power by absorbing all the energy of a laser beam as heat and measuring the temperature change. The calorimetric measurement has to temporarily stop the laser beam from work for around tens of minutes.

"Using our 'Smart Mirror' laser power meter, that stop-measure-continue process is no longer needed. Manufacturers can measure the laser power continuously during every weld and monitor the laser calibration in real time, they would know right away whenever the laser has a problem and wouldn't risk wasting metal parts with bad welds," Artusio-Glimpse said.

The Smart Mirror laser power meter is also referred to as a radiation pressure power meter (RPPM), as the operating principle of this meter is based on measuring the pressure of the laser, the radiation pressure. Light has no mass, but it has momentum and when a laser beam strikes an object such as a mirror, it will exert a tiny force known as the radiation pressure on the mirror, which directly relates to the laser power. 200 watts of laser power, for example, exerts a force equivalent to 100 micrograms, which is roughly the weight of a single human eyelash.

The key part of the Smart Mirror design is a capacitor-based compact force transducer. It consists of a spiral planar silicon spring supporting a circular plate with a high reflectivity mirror on one side and an electrode on the other. An identical silicon spring with an electrode is placed close to the first spring such that the two electrodes face each other, forming a variable capacitor.

A laser beam reflecting off the mirror on the first spring will push the first spring to move toward the second and change the capacitance between the two electrodes. By comparing to a fixed reference capacitor, the researchers can calculate the radiation pressure and laser power. After reflecting off the mirror, the laser beam can be used directly for work, making real-time monitoring of laser power or laser calibration possible.

According to Artusio-Glimpse, the team has been developing the novel radiation pressure power meter for years and an earlier version of RPPM employed a commercially available scale with a mirrored surface as a force transducer. The final system was about the size of a shoebox, with a measurement sensitivity of 50 micrograms and response time of five seconds.

In the new version of the Smart Mirror, the researchers improved the measurement sensitivity by 100 times and decreased the response time by 50 times. They also mitigated static sagging errors of the device caused by gravity when the device is rotated. This allows the sensor to be embedded at the end of a robotic arm or in additive manufacturing and laser welding systems where the laser head will move and rotate - a key feature that the early version bulk RPPM lacks. It also meets the measurement requirements of many commercially significant applications.

Based on preliminary tests, the new meter is sensitive enough to measure 100 watts of laser power with no more than one percent uncertainty, and with a response time faster than any other absolute high-power laser meter. The researchers are now continuing to validate these results with more tests. Artusio-Glimpse said the NIST team expects to establish a primary standard version of the Smart Mirror laser power meter in the near future.

Hear from the research team: ATh2A.2 "Non-Absorbing, Point-of-Use, High-Power Laser Power Meter," by Alexandra B. Artusio-Glimpse, Ivan Ryger, Paul Williams and John Lehman, at 10:30 am on June 28, 2018, at the Wyndham Orlando Resort International Drive, Orlando, Florida, United States.


Related Links
The Optical Society
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Frequency-stable laser systems for space
Berlin, Germany (SPX) May 15, 2018
For the first time a frequency reference based on molecular iodine was successfully demonstrated in space! What sounds a bit like science fiction is an important step towards laser interferometric distance measurements between satellites as well as for future global navigation satellite systems based on optical technologies. The frequency reference tests were carried out on 13 May on board the sounding rocket TEXUS54. The centerpiece of the payload, a compact laser system, which was primarily deve ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Privatize the International Space Station? Not so fast, Congress tells Trump

NASA sends new research on Orbital ATK mission to Space Station

US May Order Russian Soyuz Spacecraft to Fly Astronauts to ISS in 2020 - Source

Cement, extreme cold experiments head to space aboard Cygnus cargo ship

TECH SPACE
Two sportscar-sized satellites in orbit to measure Earth's water

Russia May Renew 'Satan' Missile Launches to Place Satellites In Orbit

Aerojet Rocketdyne demonstrates low-cost, high thrust space engine

Russia's formidable Satan Missile converted into carrier rocket

TECH SPACE
Curiosity Mars rover back on drill duty

NASA's InSight Steers Toward Mars

NASA engineers teach Mars rover Curiosity to drill again

Mars Society launches Kickstarter to create MarsVR Crew Training Program

TECH SPACE
China's Queqiao satellite carries "large umbrella" into deep space

Russia May Help China Create International Cosmonauts Rehabilitation Center

Sunrise for China's commercial space industry?

Chinese rewrite record, live 370 days in self-contained moon lab

TECH SPACE
From ships to satellites: Scotland aims for the sky

Iridium Makes Maritime Industry History

Goonhilly lands 24m pounds investment enabling global expansion

Australian Space Agency Lost In Canberra

TECH SPACE
Astonishing effect enables better palladium catalysts

Focus on space debris

Aireon System Deployment Continues with Sixth Successful Launch

Glass-forming ability: fundamental understanding leading to smart design

TECH SPACE
Extrasolar asteroid has been orbiting sun for over 4 billion years

Planet hunter snaps test image on Lunar flyby on route to final orbit

Orbital variations can trigger 'snowball states' on exoplanets

Amateur astronomer's data helps scientists discover a new exoplanet

TECH SPACE
Jupiter: A New Perspective

OSL Optics to help unlock the secrets of Jupiter's Icy Moons

Study co-authored by UCLA scientists shows evidence of water vapor plumes on Jupiter moon

Old Data Reveal New Evidence of Europa Plumes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.