. | . |
Cool flames created during a first for ISS research by Erin Winick Anthony for ISS News Houston TX (SPX) Jul 21, 2021
Cool flames, flames that burn at extremely low temperatures, are nearly impossible to create in Earth's gravity. However, they are easily produced in the microgravity environment of the International Space Station. Non-premixed cool flames, created when fuel and oxidizer are not mixed before reacting, were discovered in 2012 aboard the space station during the Flame Extinguishment (FLEX) studies, helping spawn a rapidly growing research field into the nature of cool flames. "There have been significant advances in cool flame research and understanding since 2012. The discovery of steady non-premixed cool flames has allowed a more detailed study of cool flames and their chemistry," says NASA's Glenn Research Center Scientist Daniel Dietrich. New research conducted aboard the orbiting laboratory in June 2021 has now achieved another first for microgravity flame research. Data from tests conducted for the Cool Flames Investigation with Gases (CFI-G), sponsored by the ISS U.S. National Lab and National Science Foundation, show the presence of cool flames. While the flames created aboard station in 2012 burned liquid fuel, these new cool flames burned gaseous fuels. This was the first time spherical non-premixed cool flames have been observed burning gaseous fuels. The results of this investigation could lead to cleaner, more efficient internal combustion engines. "Cool flames are important to study because engine technology is trending toward lower temperatures. Little is known about combustion chemistry at these temperatures, and experiments like CFI-G could help," says CFI-G Principal Investigator Peter Sunderland. While cool flames are important in engines, most internal combustion engines are designed using computer models that ignore their chemistry. Cool flame chemistry also has a significant impact on fuel octane and cetane ratings, numbers that describe the performance and ignition of fuel. Understanding these can have major economic consequences. Since cool flames give off little heat or light, they were too faint to be visible in real time during space station testing. The research team uncovered the presence of three cool flames in the data on thermal radiation and burner temperature measurements after the hot flames were quenched. "This is a significant advance in the understanding of cool flames, and we are excited to see these experiment results," says Dietrich. "The unique geometry and hardware allow Sunderland and his team to study the structure and limits of cool flames in more detail than was possible in earlier station experiments." An intensified camera filtered to look for the very faint emissions of a cool flame produced the flame images above. As expected, the cool flame was much smaller than the hot flame. The sequence shows the quenching of the hot flame, followed by a comparatively dark period lasting roughly a second, after which the cool flame becomes evident. "What used to be a theoretical possibility is now an experimental reality," says FLEX co-principal investigator Vedha Nayagam. "I am confident that these initial observations will lead to further experimental explorations of the boundaries of cool flame regimes."
Bacteria enlisted in French push for rare earths autonomy Orleans, France (AFP) July 20, 2021 As Europe seeks to reduce its reliance on China for the rare earth metals needed for modern batteries and electronics, French researchers have found a potentially potent ally: bacteria that can help extract the elements from mine slag heaps. The tonnes of discarded ore, which contain nickel, copper and cobalt, are the continent's only domestic source of rare earths, along with discarded phones, computers and other tech gear. "Europeans have woken up to this dependence on China and said, 'We need ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |