. 24/7 Space News .
TECH SPACE
Coatings for shoe bottoms could improve traction on slick surfaces
by Anne Trafton for MIT News
Boston MA (SPX) Jun 02, 2020

MIT researchers drew on kirigami, a variation of origami that involves cutting paper as well as folding it, to create a friction-boosting material that could be used to coat the bottom of your shoes, giving them a stronger grip on ice and other slippery surfaces.

Inspired by the Japanese art of paper cutting, MIT engineers have designed a friction-boosting material that could be used to coat the bottom of your shoes, giving them a stronger grip on ice and other slippery surfaces.

The researchers drew on kirigami, a variation of origami that involves cutting paper as well as folding it, to create the new coating. Laboratory tests showed that when people wearing kirigami-coated shoes walked on an icy surface, they generated more friction than the uncoated shoes.

Incorporating this coating into shoes could help prevent dangerous falls on ice and other hazardous surfaces, especially among the elderly, the researchers say.

"Through this work we set out to address the challenge of preventing falls, particularly on icy, slippery surfaces, and developed a kirigami-based system that facilitates an increase of friction with a surface," says Giovanni Traverso, an MIT assistant professor of mechanical engineering, a gastroenterologist at Brigham and Women's Hospital, and an assistant professor at Harvard Medical School.

Traverso and Katia Bertoldi, a professor of applied mechanics at Harvard University, are the senior authors of the study, which appears in Nature Biomedical Engineering. MIT Research Scientist Sahab Babaee is the lead author of the paper, along with Simo Pajovic, an MIT graduate student, and Ahmad Rafsanjani, a former postdoc at Harvard University.

Inspired by art
Kirigami is an art form that involves cutting intricate patterns into sheets of paper and then folding them to create three-dimensional structures. Recently, some scientists have used this technique to develop new materials such as bandages that stick more securely to knees and other joints, and sensors that can be used to coat the skin of soft robots and help them orient themselves in space.

In this case, the team applied this approach to create intricate patterns of spikes in a sheet of plastic or metal. These sheets, applied to the sole of a shoe, remain flat while the wearer is standing, but the spikes pop out during the natural movement of walking.

"The novelty of this type of surface is that we have a shape transition from a 2D flat surface to a 3D geometry with needles that come out," Babaee says. "You can use those elements to control friction, because the sharp needles can pop in and out based on the stretch that you apply."

The researchers created and tested several different designs, including repeating patterns of spikes shaped like squares, triangles, or curves. For each shape, they also tested different sizes and arrangements, and they cut the patterns into both plastic sheets and stainless steel. For each of the designs, they measured the stiffness and the angle at which the spikes pop out when the material is stretched.

They also measured the friction generated by each design on a variety of surfaces, including ice, wood, vinyl flooring, and artificial turf. They found that all of the designs boosted friction, with the best results produced by a pattern of concave curves.

The researchers then used the concave curve coatings for tests with human volunteers. They attached the coatings to a variety of types of shoes, including sneakers and winter boots, and measured the friction produced when subjects walked across a force plate - an instrument that measures the forces exerted on the ground - covered with a 1-inch-thick layer of ice.

They found that with the kirigami coatings attached, the amount of friction generated was 20 to 35 percent higher than the friction generated by the shoes alone.

Preventing falls
The researchers are now working on determining the best way to attach and incorporate the kirigami surfaces. They are considering embedding them into the soles or designing them as a separate element that could be attached when needed. They are also exploring the possibility of using different materials, such as a rubber-like polymer with a reinforced steel tip.

While the researchers' original motivation was preventing slips on icy surfaces, they expect that this kind of shoe grip could also be useful in other settings, such as wet or oily working environments.

"We're looking at potential routes to commercialize the system, as well as further development of the system through different use cases," Traverso says.

The research was funded by the MIT Department of Mechanical Engineering, the U.S. National Science Foundation, and the Swiss National Science Foundation.

Research Report: "Bioinspired kirigami metasurfaces as assistive shoe grips"


Related Links
MIT News Office
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
The flame of discovery grows as Saffire sets new fires in space
Cleveland OH (SPX) May 21, 2020
NASA ignited another set of space fire experiments last week when Saffire IV lit a number of longer, stronger flames inside Northrop Grumman's Cygnus cargo spacecraft. Saffire, NASA's Spacecraft Fire Safety Demonstration Project, is a series of six experiments that investigate how fires grow and spread in space, especially aboard future spacecraft bound for the Moon and Mars. Just like Saffires I, II and III, the researchers began the experiment in Cygnus after it completed its primary Internation ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Barrett, Raymond speak with U.S. astronaut ahead of historic launch

US Space Council meets ahead of private, US crewed launch

Robert Polsgrove: Commercial Crew to Human Landers

NASA seeking US Citizens for social isolation study for Moon and Mars missions

TECH SPACE
SpaceX, NASA delay milestone mission over lightning fears

Crew Dragon DEMO-2 mission ready for new era for human spaceflight

NASA astronauts will test new SpaceX capsule, execute spacewalks

America gets ready to again see astronauts head into space from U.S. soil

TECH SPACE
Air deliveries bring NASA's Perseverance Mars rover closer to launch

NASA's Curiosity Rover Finds Clues to Chilly Ancient Mars Buried in Rocks

The little tires that could go to Mars

NASA's Perseverance Rover goes through trials by fire, ice, light and sound

TECH SPACE
China space program targets July launch for Mars mission

More details of China's space station unveiled

China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

TECH SPACE
Harwell Space Cluster launches 10-year strategy to become UK Gateway to Space

Study explores space's impact on our daily lives

Strings of pearls in the night sky - the Starlink satellite project

India allows private firms, start-ups a sneak peek into ISRO data

TECH SPACE
CSIRO uncovers innovative approach to gold exploration

Amazon puts heat on eSports giants with 'Crucible'

Controlling artificial cilia with magnetic fields and light

The flame of discovery grows as Saffire sets new fires in space

TECH SPACE
Terrestrial bacteria can grow on nutrients from space

ESO telescope sees signs of planet birth

The bold plan to see continents and oceans on another earth

Statistical analysis reveals odds of life evolving on alien worlds

TECH SPACE
SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.