![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Nancy Smith Kilkenny for GRC news Cleveland OH (SPX) May 21, 2020
NASA ignited another set of space fire experiments last week when Saffire IV lit a number of longer, stronger flames inside Northrop Grumman's Cygnus cargo spacecraft. Saffire, NASA's Spacecraft Fire Safety Demonstration Project, is a series of six experiments that investigate how fires grow and spread in space, especially aboard future spacecraft bound for the Moon and Mars. Just like Saffires I, II and III, the researchers began the experiment in Cygnus after it completed its primary International Space Station resupply mission and departed to a safe distance away from the station. One of the unique features of Saffire IV, is that after two material burns, a carbon dioxide scrubber and smoke eater were used to remove particulate and carbon monoxide. The instrument to monitor combustion gases and the smoke eater filter are prototypes of what will be used on the Orion spacecraft. "We want to take what we learned from the first three Saffire experiments and see how flames spread and grow in other spacecraft conditions," says Gary Ruff, Saffire project manager at NASA's Glenn Research Center in Cleveland. "We also loaded Saffire IV with more diagnostic equipment to see how effectively we can detect fires, measure combustion products, and evaluate future fire response and clean up technologies." Saffire, built by Zin Technologies, Inc. in Cleveland, is equipped with numerous sensors that detect oxygen and carbon dioxide levels, smoke concentration and diameter, and temperatures at different places in the Cygnus vehicle. Four cameras were mounted inside to show the size and spread of the flame. The first three Saffire experiments had limited-sized fires and examined ignition and spread over similar materials. Results showed that flames spread quickly and achieved a steady size and burn rate, unlike here on Earth where flames tend to continue to grow. Scientists also learned that the size of the spacecraft had more effect on the fire than anticipated. Saffire's most important goal is to understand fire behavior in space so safety measures can be developed to deal with fire emergencies, when astronauts do not have the option to exit spacecraft or quickly return to Earth. Imagery and data returned from the Saffire investigations will be important for Artemis missions to the Moon and future missions to Mars. Two additional Saffire experiments are scheduled for this October and March of 2021, as NASA continues to develop safer ways to operate future crewed exploration missions.
![]() ![]() AFRL pushes boundaries in metals printing with new research Wright-Patterson AFB CO (SPX) May 19, 2020 Advancing the state of the art in metals additive manufacturing pushes the boundaries of possibility for aerospace and defense applications. Metal additive manufacturing allows the manufacturing of parts with complex geometries that are otherwise un-manufacturable, producing unique, performance-enhancing designs. The feasibility of small production runs and quick turn-around are two additional benefits of AM. State-of-the-art metal 3D printers promise to revolutionize manufacturing, but have ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |