. 24/7 Space News .
Clemson doctoral candidate uses rockets to surf the Alaskan sky
by Staff Writers
Clemson SC (SPX) Aug 12, 2020

Stock image of a sounding rocket launch at Poker Flat.

When you think of surfing and Brazil, the first image that comes to mind is probably warm waves crashing on a white sand beach, not a cloud of gas swirling 65 miles above the Earth. But the latter is exactly what was found by Clemson University researcher Rafael Mesquita, a native of Brazil.

Mesquita and a multi-institutional research team documented "surfer waves" in the upper atmosphere that create a pipeline of energy between layers in space. Just like ocean waves crash onto the beach, the atmospheric "surfer waves" generate turbulence that carries oxygen down low and nitrogen up high. Usually the oxygen is high in the atmosphere and nitrogen is closer to Earth's surface.

"For many years, atmospheric scientists have studied oxygen showing up lower than it should be, but we identified a possible cause for it and revealed more detail than ever before," said Mesquita, a doctoral candidate in the College of Science's department of physics and astronomy.

The groundbreaking discovery was funded by NASA. It is featured on the NASA Heliophysics homepage and was published July 23, 2020 in the Journal of Geophysical Research - Space Physics. The paper is titled "In?situ observations of neutral shear instability in the statically stable high?latitude mesosphere and lower thermosphere during quiet geomagnetic conditions."

The Clemson research team launched rockets that released a harmless gas as a contrast medium to illuminate the atmospheric wind patterns so they could be photographed. Called the Super Soaker campaign, the research was conducted at the Poker Flat Research Range in Alaska on January 26, 2018.

"Our measurements were made at 65 miles above Earth's surface and showed winds swirling at about 100 miles per hour," Mesquita said.

The "surfer waves," currents of wind curling into each other and creating the dramatic effect of waves in the sky, are a result of the Kelvin-Helmholtz instability (KHI). This effect is often seen in nature when gases or liquids pass each other at different speeds, creating the curling pattern similar to waves on the beach or dust swirls in the desert.

Now that Clemson scientists have observed the KHI in more detail than ever, they have a clearer understanding of how the winds in the upper atmosphere carry gases farther than they thought possible.

"These surfer waves offer insight into the complex system of Earth's atmosphere where slight temperature changes on one side of the world affect wind patterns on the other," Mesquita concluded. "The upper reaches of the atmosphere may seem like a world away, but what happens up there affects us more than we may realize."

Research paper

Related Links
Clemson University
Earth Observation News - Suppiliers, Technology and Application

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Rocket sees curling waves above Alaskan sky
Greenbelt MD (SPX) Aug 07, 2020
The "surfer waves" in this image, forming high above the Alaskan sky, illuminate the invisible currents in the upper atmosphere. They were measured by trimethyl-aluminum gas released during a sounding rocket launch from Poker Flat, Alaska, on Jan. 26, 2018. Scientists photograph the gas, which is not harmful to humans, after it instantaneously ignites when exposed to oxygen. The findings were published in JGR: Space Physics. Such curling waves are a product of the Kelvin-Helmholtz instabilit ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Work Begins on Delta Faucet's Droplet Formation Space Station Experiment This Week

ESA Astronauts Maurer and Pesquet continue training at JSC

Explore how space supports daily life around the world

Room with a view: Virgin Galactic gives peek at spacecraft cabin

Astronauts praise 'flawless' SpaceX capsule landing

Key Connection for Artemis I Arrives at Kennedy

SpaceX brings NASA astronauts home safe in milestone mission

Proton-M with two telecommunication satellites launches from Baikonur

Radiation-Devouring Mold Could Be Humanity's Key to Venturing to Mars, New Research Says

A European dream team for Mars

Ice sheets, not rivers, carved valleys on Mars, new study says

NASA's Perseverance rover bound for Mars to seek ancient life

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

Hisdesat And XTAR Complete Transaction For XTAR-EUR Satellite

Amazon to invest $10 bn in space-based internet system

Latvia becomes ESA Associate Member State

State of the Space Industrial Base 2020 Report

Transforming e-waste into a strong, protective coating for metal

Return of the LIDAR

How to mix old tires and building rubble to make sustainable roads

At Aerospace: How Internships Went Virtual

Microbes in the seabed survive on little energy

Surprising number of exoplanets could host life

As if space wasn't dangerous enough

Scientists revive microbes from 100 million years ago

NASA's Webb Telescope Will Study Jupiter, Its Rings, and Two Intriguing Moons

NASA Juno takes first images of Ganymede's North Pole

Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.