. 24/7 Space News .
Cause, scope determined for deadly winter debris flow in Uttarakhand, India
by Staff Writers
Seattle WA (SPX) Jun 11, 2021


The Uttarakhand region of India experienced a humanitarian tragedy on Feb. 7, 2021, when a wall of debris and water barreled down the Ronti Gad, Rishiganga and Dhauliganga river valleys.

The event began when a wedge of rock carrying a glacier broke off of a steep ridge in the Himalayan mountain range. The resulting debris flow destroyed two hydropower facilities and left more than 200 people dead or missing.

A self-organized coalition of 53 scientists came together in the days following the disaster to investigate the cause, scope and impacts. The team determined that the flood was caused by falling rock and glacier ice that melted on its descent - not by a lake or diverted river - which will help researchers and policymakers better identify emerging hazards in the region.

The study, which used satellite imagery, seismic records and eyewitness videos to produce computer models of the flow, was published June 10 in Science.

"On the morning of the event, I was reading the news over coffee, and saw a headline about a disaster in the Himalayas," said co-author David Shean, a University of Washington assistant professor of civil and environmental engineering. "I sat down at the computer and pulled up the satellite images that had been acquired that morning. When I saw the dust cloud moving down the valley, I started writing emails to other scientists asking if they were working on this. One email thread quickly became five, then 10, and the response effort consumed most of our waking hours for the next two weeks."

Initial hypotheses for the cause of the event suggested a glacial lake outburst flood. But there are no glacial lakes large enough to produce a flood anywhere near the site, the team determined.

"Our access to high-resolution satellite imagery and research software, and our expertise in satellite remote sensing were crucial to get a bird's-eye view of how the event unfolded," said co-author Shashank Bhushan, a UW doctoral student in civil and environmental engineering. "We worked with our French collaborators to coordinate satellite collections within days of the event and rapidly process the images to derive detailed topographic maps of the site."

The researchers compared the images and topographic maps from before and after the event to document all of the changes and reconstruct the sequence of events.

"We tracked a plume of dust and water to a conspicuous dark patch high on a steep slope," said lead author Dan Shugar, associate professor at the University of Calgary.

The dark patch turned out to be the scar left by the 35 million cubic yards of missing rock and glacier ice - enough material to cover Washington, D.C., with a half-foot-deep layer.

"This was the source of a giant landslide that triggered the cascade of events, and caused immense death and destruction," said Shugar, who was previously an assistant professor at UW Tacoma.

The researchers also used the maps to determine how far the block of ice and rock fell.

"The failed block fell over a mile before impacting the valley floor. To put this height in context, imagine vertically stacking up 11 Space Needles or six Eiffel Towers," Bhushan said.

Then the larger team was able to quantify how the pulverized rock and ice were redistributed over the downstream areas.

"As the block fell, most of the glacier ice melted within minutes. This resulted in a huge volume of water associated with the flooding," Bhushan said. "This is highly unusual - a normal rock landslide or snow/ice avalanche could not have produced such huge volumes of water."

For Bhushan, the work was personal.

"In general, doctoral research projects are very niche. I sometimes have a hard time explaining to my parents why measuring glacier dynamics is important," Bhushan said. "But due to the scale of this disaster, my family and friends back in India were very curious to know how this event unfolded, and they were expecting me to come up with an answer. These interactions provided me with a sense of belonging and motivation that some of my research can be of such immediate use to society."

The team also used satellite image archives to show that previous large ice masses had been dislodged from the same ridge and struck the same valley in recent years. The researchers suggest that climate change is likely increasing the frequency of such events, and that the greater magnitude of the latest disaster should be considered before further infrastructure development in the area.

"These high-mountain rivers are appealing for hydropower projects, and we need a better understanding of the full spectrum of potential high-mountain hazards," Shean said. "We hope that lessons learned from this effort will improve our ability to respond to future disasters and guide policy decisions that will save lives."

Related Links
University Of Washington
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Sri Lanka floods, mudslides kill 16
Colombo (AFP) June 6, 2021
Monsoon rains triggered floods and mudslides in Sri Lanka killing at least 16 people and leaving more than a quarter of a million homeless, the Disaster Management Centre (DMC) said Sunday. Heavy downpours in 10 out of the country's 25 districts since Friday buried most of the victims alive, the DMC said. In the central Kegalle district, a pet dog pointed rescuers to a location where four members of the same family were buried alive, officials said. However, all four were found dead by the t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TMC Technologies wins contract to support NASA's IV&V Program

Cyprus, Austria, Greece have EU's cleanest beaches: agency

NASA awards new spacecraft avionics development contract

Adventure-lovers defy gravity on the tallest Chinese TV tower

Axiom Space signs with SpaceX for 3 more private crew missions to ISS

California prepares for more West Coast space launches

NASA stacks elements for upper portion of Artemis II Core Stage

PLD Space receives ESA contract to study reusing MIURA 5 boosters

InSight Mars Lander Gets a power boost

NASA's Curiosity rover captures shining clouds on Mars

Surviving an in-flight anomaly: what happened on Ingenuity's 6th flight

Newly discovered glaciers could aid human survival on Mars

Tianzhou 2 docks with China's new station core module

Spacewalks planned for Shenzhou missions

China cargo craft docks with space station module

New advances inspire China's deep space exploration

Kleos Polar Vigilance Mission Satellites dispatched to Cape Canaveral for Launch

GomSpace wins contract to develop satellites for global air traffic management consortium

GMV supplies operations centre for the new generation of Yahsat satellites

European space program seeks first disabled astronaut

SpaceChain to test On-orbit Ethereum Multisignature Transaction Services on ISS

Technique inspired by lace making could someday weave structures in space

CityU scientists make a breakthrough towards solving the structural mystery of glass

Visualizing cement hydration on a molecular level

Did heat from impacts on asteroids provide the ingredients for life on Earth?

Frozen rotifer reanimated after 24,000 years in the Arctic tundra

Scientists develop new molecular tool to detect alien life

Thirty year stellar survey cracks mysteries of galaxy's giant planets

Leiden astronomers calculate genesis of Oort cloud in chronologically order

NASA's Juno to get a close look at Jupiter's Moon Ganymede

Jupiter antenna that came in from the cold

Experiments validate the possibility of helium rain inside Jupiter and Saturn

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.