24/7 Space News
TIME AND SPACE
Can Higgs reach the Hidden Valley
The search for exotic Higgs boson decays in future lepton colliders: 1) an electron and a positron from opposing beams collide; 2) the collision produces a high-energy Higgs boson; 3) the boson decays into two exotic particles moving away from the axis of the beams; 4) exotic particles decay into pairs of quark-antiquark, visible to detectors.
ADVERTISEMENT
     
Can Higgs reach the Hidden Valley
by Staff Writers
Warsaw, Poland (SPX) May 19, 2023

It may be that the famous Higgs boson, co-responsible for the existence of masses of elementary particles, also interacts with the world of the new physics that has been sought for decades. If this were indeed to be the case, the Higgs should decay in a characteristic way, involving exotic particles. At the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow, it has been shown that if such decays do indeed occur, they will be observable in successors to the LHC currently being designed.

When talking about the 'hidden valley', our first thoughts are of dragons rather than sound science. However, in high-energy physics, this picturesque name is given to certain models that extend the set of currently known elementary particles. In these so-called Hidden Valley models, the particles of our world as described by the Standard Model belong to the low-energy group, while exotic particles are hidden in the high-energy region. Theoretical considerations suggest then the exotic decay of the famous Higgs boson, something that has not been observed at the LHC accelerator despite many years of searching. However, scientists at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow argue that Higgs decays into exotic particles should already be perfectly observable in accelerators that are successors to the Large Hadron Collider - if the Hidden Valley models turn out to be consistent with reality.

"In Hidden Valley models we have two groups of particles separated by an energy barrier. The theory is that there could then be exotic massive particles which could cross this barrier under specific circumstances. The particles like Higgs boson or hypothetic Z' boson would act as communicators between the particles of both worlds. The Higgs boson, one of the most massive particle of the Standard Model, is a very good candidate for such a communicator," explains Prof. Marcin Kucharczyk (IFJ PAN), lead author of an article in the Journal of High Energy Physics, which presents the latest analyses and simulations concerning the possibility of detecting Higgs boson decays in the future lepton accelerators.

The communicator, after passing into the low energy region, would decay into two rather massive exotic particles. Each of these would, in picoseconds - that is, trillionths of a second - decay into another two particles, with even smaller masses, which would then be within the Standard Model. So what signs would be expected in the detectors of future accelerators? The Higgs itself would remain unnoticed, as would the two Hidden Valley particles. However, the exotic particles would gradually diverge and eventually decay, generally into quark-antiquark beauty pairs visible in modern detectors as jets of particles shifted from the axis of the lepton beam.

"Observations of Higgs boson decays would therefore consist of searching for the jets of particles produced by quark-antiquark pairs. Their tracks would then have to be retrospectively reconstructed to find the places where exotic particles are likely to have decayed. These places, professionally called decay vertices, should appear in pairs and be characteristically shifted with respect to the axis of the colliding beams in the accelerator. The size of these shifts depends, among other things, on masses and average lifetime of exotic particles appearing during the Higgs decay", says Mateusz Goncerz, M.Sc. (IFJ PAN), co-author of the paper in question.

The collision energy of protons at the LHC, currently the world's largest particle accelerator, is up to several teraelectronvolts and is theoretically sufficient to produce Higgs capable of crossing the energy barrier that separates our world from the Hidden Valley. Unfortunately, protons are not elementary particles - they are composed of three valence quarks bound by strong interactions, capable of generating huge numbers of constantly appearing and disappearing virtual particles, including quark-antiquark pairs. Such a dynamic and complex internal structure produces huge numbers of secondary particles in proton collisions, including many quarks and antiquarks with large masses. They form a background in which it becomes practically impossible to find the particles from the exotic Higgs boson decays that are being sought.

The detection of possible Higgs decays to these states should be radically improved by accelerators being designed as successors to the LHC: the CLIC (Compact Linear Collider) and the FCC (Future Circular Collider). In both devices it will be possible to collide electrons with their anti-material partners, the positrons (with CLIC dedicated to this type of collision, while FCC will also allow collisions of protons and heavy ions). Electrons and positrons are devoid of internal structure, so the background for exotic Higgs boson decays should be weaker than at the LHC. Only will it be sufficiently so to discern the valuable signal?

In their research, physicists from the IFJ PAN took into account the most important parameters of the CLIC and FCC accelerators and determined the probability of exotic Higgs decays with final states in the form of four beauty quarks and antiquarks. To ensure that the predictions cover a wider group of models, the masses and mean lifetimes of the exotic particles were considered over suitably wide ranges of values. The conclusions are surprisingly positive: all indications are that, in future electron-positron colliders, the background of exotic Higgs decays could be reduced even radically, by several orders of magnitude, and in some cases could even be considered negligible.

The existence of particle-communicators is not only possible in Hidden Valley models, but also in other extensions of the Standard Model. So if the detectors of future accelerators register a signature corresponding to the Higgs decays analysed by the Cracow researchers, this will only be the first step on the road to understanding new physics. The next will be to collect a sufficiently large number of events and determine the main decay parameters that can be compared with the predictions of theoretical models of the new physics.

"The main conclusion of our work is therefore purely practical. We are not sure whether the new physics particles involved in Higgs boson decays will belong to the Hidden Valley model we used. However, we have treated this model as representative of many other proposals for new physics and have shown that if, as predicted by the model, the Higgs bosons decay into exotic particles, this phenomenon should be perfectly visible in those electron and positron colliders which are planned to be launched in the near future", concludes Prof. Kucharczyk.

Research Report:"Search for exotic decays of the Higgs boson into long-lived particles with jet pairs in the final state at CLIC"

Related Links
Institute of Nuclear Physics Polish Academy of Sciences
Understanding Time and Space

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Uncovering universal physics in the dynamics of a quantum system
University Park PA (SPX) May 18, 2023
New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium. A team of physicists at Penn State showed that these gases immediately respond, "evolving" with features that are common to all "many-body" quantum systems thrown out of equilibrium in this way. A paper describing the experiments appears May 17, 2023 in the journal Nature. ... read more

ADVERTISEMENT
ADVERTISEMENT
TIME AND SPACE
Private mission carrying Saudi astronauts launches to ISS

Private mission carrying first Saudi astronauts to visit ISS set for launch

Axiom Space's second crewed mission gets green light

Ax-2 crew carrying personal, cultural mementoes on launch to ISS

TIME AND SPACE
Rocket Lab to launch small satellite swarm for NASA

Sales rocket for Zenno's fuel-free satellite pointing system

Virgin Orbit receives more than 30 indications of interest under court approved bid procedures

For 191st time, SpaceX booster successfully returns after launch

TIME AND SPACE
A blancing act at Ubajara: Sol 3830

These sounds are out of this world

Perseverance images may show record of wild Martian river

Sitting still but not idling at Ubajara: Sols 3827-3829

TIME AND SPACE
"Tianzhou Express" is online again, with five highlights

Tianzhou 6 docks with Tiangong space station

China's cargo craft Tianzhou 6 ready for launch

Tianzhou-5 cargo craft separates from China's space station

TIME AND SPACE
Toshiba posts 35% decline in full-year net profit

Sidus Space selected by OneWeb to manufacture satellite hardware

Sidus Space expands global ground site network with new ATLAS contract

How NASA's work led to commercial spaceflight revolution

TIME AND SPACE
Beauty brand Lush unveils new Green Hub but business comes first

EU targets fast fashion in push for durable goods

Team uses 3D printing to strengthen key material in aerospace and energy utilities

GPR announces Series A funding on back of customer traction

TIME AND SPACE
Astronomers observe the first radiation belt seen outside of our solar system

Researchers uncover how primordial proteins formed on prebiotic earth

Bacteria survive on radioactive elements

Astronomers spot benzene in planet-forming disk around star for first time

TIME AND SPACE
NASA's Juno mission closing in on Io

Pioneer 11, launched 50 years ago, helped solve mysteries of the universe

NASA: Up to 4 of Uranus' moons could have water

New video series captures team working on NASA's Europa Clipper

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.