24/7 Space News
TIME AND SPACE
Uncovering universal physics in the dynamics of a quantum system
stock illustration only
Uncovering universal physics in the dynamics of a quantum system
by Staff Writers
University Park PA (SPX) May 18, 2023

New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium. A team of physicists at Penn State showed that these gases immediately respond, "evolving" with features that are common to all "many-body" quantum systems thrown out of equilibrium in this way. A paper describing the experiments appears May 17, 2023 in the journal Nature.

"Many major advances in physics over the last century have concerned the behavior of quantum systems with many particles," said David Weiss, Distinguished Professor of Physics at Penn State and one of the leaders of the research team. "Despite the staggering array of diverse 'many-body' phenomena, like superconductivity, superfluidity, and magnetism, it was found that their behavior near equilibrium is often similar enough that they can be sorted into a small set of universal classes. In contrast, the behavior of systems that are far from equilibrium has yielded to few such unifying descriptions."

These quantum many-body systems are ensembles of particles, like atoms, that are free to move around relative to each other, Weiss explained. When they are some combination of dense and cold enough, which can vary depending on the context, quantum mechanics-the fundamental theory that describes the properties of nature at the atomic or subatomic scale-is required to describe their dynamics.

Dramatically out-of-equilibrium systems are routinely created in particle accelerators when pairs of heavy ions are collided at speeds near the speed-of-light. The collisions produce a plasma-composed of the subatomic particles "quarks" and "gluons"-that emerges very early in the collision and can be described by a hydrodynamic theory-similar to the classical theory used to describe air flow or other moving fluids-well before the plasma reaches local thermal equilibrium. But what happens in the astonishingly short time before hydrodynamic theory can be used?

"The physical process that occurs before hydrodynamics can be used has been called 'hydrodynamization," said Marcos Rigol, professor of physics at Penn State and another leader of the research team. "Many theories have been developed to try to understand hydrodynamization in these collisions, but the situation is quite complicated and it is not possible to actually observe it as it happens in the particle accelerator experiments. Using cold atoms, we can observe what is happening during hydrodynamization."

The Penn State researchers took advantage of two special features of one-dimensional gases, which are trapped and cooled to near absolute zero by lasers, in order to understand the evolution of the system after it is thrown of out of equilibrium, but before hydrodynamics can be applied. The first feature is experimental. Interactions in the experiment can be suddenly turned off at any point following the influx of energy, so the evolution of the system can be directly observed and measured. Specifically, they observed the time-evolution of one-dimensional momentum distributions after the sudden quench in energy.

"Ultra-cold atoms in traps made from lasers allow for such exquisite control and measurement that they can really shed light on many-body physics," said Weiss. "It is amazing that the same basic physics that characterize relativistic heavy ion collisions, some of the most energetic collisions ever made in a lab, also show up in the much less energetic collisions we make in our lab."

The second feature is theoretical. A collection of particles that interact with each other in a complicated way can be described as a collection of "quasiparticles" whose mutual interactions are much simpler. Unlike in most systems, the quasiparticle description of one-dimensional gases is mathematically exact. It allows for a very clear description of why energy is rapidly redistributed across the system after it is thrown out of equilibrium.

"Known laws of physics, including conservation laws, in these one-dimensional gases imply that a hydrodynamic description will be accurate once this initial evolution plays out," said Rigol. "The experiment shows that this occurs before local equilibrium is reached. The experiment and theory together therefore provide a model example of hydrodynamization. Since hydrodynamization happens so fast, the underlying understanding in terms of quasi-particles can be applied to any many-body quantum system to which a very large amount of energy is added."

In addition to Weiss and Rigol, the research team at Penn State includes Yuan Le, Yicheng Zhang, and Sarang Gopalakrishnan. The research was funded by the U.S. National Science Foundation. Computations were carried out at the Penn State Institute for Computational and Data Sciences.

Research Report:Observation of hydrodynamization and local prethermalization in 1D Bose gases

Related Links
Penn State
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Seeing electron orbital signatures
Austin TX (SPX) May 16, 2023
No one will ever be able to see a purely mathematical construct such as a perfect sphere. But now, scientists using supercomputer simulations and atomic resolution microscopes have imaged the signatures of electron orbitals, which are defined by mathematical equations of quantum mechanics and predict where an atom's electron is most likely to be. Scientists at UT Austin, Princeton University, and ExxonMobil have directly observed the signatures of electron orbitals in two different transition-meta ... read more

TIME AND SPACE
Private mission carrying Saudi astronauts launches to ISS

Private mission carrying first Saudi astronauts to visit ISS set for launch

Axiom Space's second crewed mission gets green light

Ax-2 crew carrying personal, cultural mementoes on launch to ISS

TIME AND SPACE
Rocket Lab to launch small satellite swarm for NASA

Sales rocket for Zenno's fuel-free satellite pointing system

Virgin Orbit receives more than 30 indications of interest under court approved bid procedures

For 191st time, SpaceX booster successfully returns after launch

TIME AND SPACE
A blancing act at Ubajara: Sol 3830

These sounds are out of this world

Perseverance images may show record of wild Martian river

Sitting still but not idling at Ubajara: Sols 3827-3829

TIME AND SPACE
"Tianzhou Express" is online again, with five highlights

Tianzhou 6 docks with Tiangong space station

China's cargo craft Tianzhou 6 ready for launch

Tianzhou-5 cargo craft separates from China's space station

TIME AND SPACE
Toshiba posts 35% decline in full-year net profit

Sidus Space selected by OneWeb to manufacture satellite hardware

Sidus Space expands global ground site network with new ATLAS contract

How NASA's work led to commercial spaceflight revolution

TIME AND SPACE
Beauty brand Lush unveils new Green Hub but business comes first

EU targets fast fashion in push for durable goods

Team uses 3D printing to strengthen key material in aerospace and energy utilities

GPR announces Series A funding on back of customer traction

TIME AND SPACE
Astronomers observe the first radiation belt seen outside of our solar system

Researchers uncover how primordial proteins formed on prebiotic earth

Bacteria survive on radioactive elements

Astronomers spot benzene in planet-forming disk around star for first time

TIME AND SPACE
NASA's Juno mission closing in on Io

Pioneer 11, launched 50 years ago, helped solve mysteries of the universe

NASA: Up to 4 of Uranus' moons could have water

New video series captures team working on NASA's Europa Clipper

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.