. 24/7 Space News .
MICROSAT BLITZ
CXBN-2 CubeSat to Embark on an Important X-ray Astronomy Mission
by Tomasz Nowakowski for AstroWatch
Los Angeles CA (SPX) Mar 07, 2017


CXBN-2 Flight Unit in the Morehead State University Space Science Center Spacecraft Integration and Assembly Facility. Image courtesy MSU.

A university-built small satellite known as the Cosmic X-Ray Background NanoSat-2 (CXBN-2) is being prepared for its upcoming ambitious science mission. The spacecraft - scheduled for launch into space on March 19 - is expected to deliver crucial data that could advance our knowledge about the cosmic X-ray background (CXB). Led by Morehead State University (MSU), the CXBN-2 project addresses fundamental science questions regarding the structure, origin and evolution of the universe. To answer these questions, the satellite will conduct high precision measurements of the CXB.

"The goal of the CXBN-2 mission is to increase the precision of measurements of the CXB in the 30 to 50 keV range to a precision of almost five percent, thereby constraining models that attempt to explain the relative contribution of proposed sources and lending insight into the underlying physics of the early universe," Benjamin Malphrus, CXBN-2 Principal Investigator at MSU told Astrowatch.net.

CXBN-2 is a small two-unit CubeSat that will rely on its two Cadmium Zinc Telluride (CZT) detectors to achieve its scientific goals. Together with the satellite's improved array configuration, these instruments will be able to carry out high precision measurements of the CXB. "With the novel CZT detector aboard CXBN-2 and an improved array configuration, a new, high precision measurement is possible," Malphrus noted.

The CZT detectors were developed by Redlen Technologies, a leading manufacturer of high-resolution semiconductor radiation detectors. The company has produced extremely uniform crystalline structure CZT material though the manufacturing process known as the Traveling Heater Method (THM). This allows uniformity in the semiconductor material so that charge is evenly distributed, allowing greater energy resolution and detection by bleeding off impurities.

The CZT detectors form the REDLEN M1770 CZT Array, an imaging module onboard the CXBN-2 CubeSat. This module is a 256-pixel radiation detector that is configured in a 16x16 matrix with a 2.46 mm pixel pitch. It consists of a 2x2 array of 64-pixel CZT detectors with thicknesses of five mm and bonded to a common cathode plate.

"Though originally intended for the detection of X-ray and gamma-ray photons while operating at room temperature and for applications in medical physics and security imaging, we found that the CZT detectors possessed the desired energy resolution and photon efficiency over the energy range of interest for the mission." Thomas Pannuti, CXBN-2 Science Principal Investigator at MSU told Astrowatch.net.

With a mass of about 5.7 lbs. (2.6 kilograms), the CXBN-2 CubeSat has dimensions of 3.93 x 3.93 x 7.87 inches (10 x 10 x 20 centimeters) and is fitted with four deployable solar arrays capable of generating up to 15 W of power. The satellite incorporates a power distribution and handling system known as PMD, a command and data handling system (C and DH) based on a Cortex Arm processor, and an innovative attitude determination and control system (ADACS) developed at MSU.

In comparison with the first CXBN mission which was sent into space in September 2012, the CXBN-2 CubeSat has two 256 pixel arrays instead of one. Moreover, it features an innovative 3-D printed Tungsten collimator, a series of improvements to the spacecraft bus, and an innovative conops characterized by a free flying minimally spinning spacecraft.

In this configuration, the CXBN-2 satellite has the potential to advance our understanding about the diffuse X-ray background in particular and the temporal evolution of supermassive black holes at the centers of galaxies in general.

Malphrus and his colleagues are convinced that their CubeSat will provide measurements of the CXB with high precision, thus constraining models that address the relative contribution of the proposed dominant emitting source population (namely heavily absorbed active galactic nuclei).

"Such a high precision measurement of the CXB will provide insight into the underlying physics of the early universe and provide a window on the most energetic objects in the distant universe," Malphrus explained.

CXBN-2 is currently in the final phase of preparations for its March 19 liftoff from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The last pre-launch activities include finalizing the ground support software and continuing characterization of the engineering model CZT arrays.

The satellite's flight and engineering models were completed in the Fall of 2016 and passed flight qualification testing. The flight unit was delivered to the launch integrator, Nanoracks, in December 2016 and was subsequently shipped to the Kennedy Space Center in Florida.

The CXBN-2 CubeSat will be launched atop an Atlas V rocket, piggybacking on the seventh Cygnus spacecraft mission to the International Space Station (ISS). Besides Cygnus and CXBN-2, a fleet of other satellites, mainly technology demonstrators, will be also sent into orbit on this mission.

Although MSU has already sent five smallsats into space, the CXBN-2 CubeSat seems to be the university's most significant science mission so far.

"We are entering a new era of significant science being supported by CubeSats and Morehead State is at the forefront of this enterprise. The opportunity to participate in astrophysics research facilitated by the CubeSat platform as well as to train our students in space systems engineering and observational astrophysics through live space missions like CXBN-2 is invaluable to our research program, our academic programs and to our students," Pannuti concluded.

MICROSAT BLITZ
Goddard's IceCube SmallSat Ready for Launch, Space Station Deployment
Washington DC (SPX) Mar 01, 2017
Less is more, and that's not just a buzz phrase. Good things are coming in smaller packages (again, not just another buzz phrase). Here's one that's 'on the rocks' coming soon to a launch near you; NASA has an IceCube that will be out of this world. IceCube, which will measure cloud ice levels using a radiometer, is the first small satellite project managed by Goddard Space Flight Center's ... read more

Related Links
AstroWatch
Microsat News and Nanosat News at SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MICROSAT BLITZ
NASA Releases Free Software Catalog

India has capability to develop space station, says top official

Orion spacecraft achieves key safety milestone

The NASA Imager Dentists Use Daily

MICROSAT BLITZ
Space squadron supports record-breaking satellites launch

Blue Origin shares video of New Glenn rocket

Europe launches fourth Earth monitoring satellite

Elon Musk: tech dreamer reaching for sun, moon and stars

MICROSAT BLITZ
New evidence for a water-rich history on Mars

Humans May Quickly Evolve on Mars, Biologist Claims

NASA Orbiter Steers Clear of Mars Moon Phobos

Remnants of a mega-flood on Mars

MICROSAT BLITZ
China launches experiment satellite "TK-1"

Riding an asteroid: China's next space goal

China's 1st cargo spacecraft to make three rendezvous with Tiangong-2

China to launch space station core module in 2018

MICROSAT BLITZ
How low can you go? New project to bring satellites nearer to Earth

Teal Group Pegs Value of Space Payloads Through 2036 at Over $250 Billion

Iridium Safety Voice Communications Installs Surge Past 500 Aircraft

Turkey Moves Closer to Launching Own Space Agency

MICROSAT BLITZ
Aireon and Thales Begin Validation of Space-Based ADS-B Data

Bubble-recoil could be used to cool microchips, even in space

Space surveillance radar system fully operational

Coffee-ring effect leads to crystallization control

MICROSAT BLITZ
Hunting for giant planet analogs in our own backyard

Biochemical 'fossil' shows how life may have emerged without phosphate

Faraway Planet Systems Are Shaped Like the Solar System

The missing link in how planets form

MICROSAT BLITZ
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.