. 24/7 Space News .
EXO WORLDS
Building blocks for RNA-based life abound at center of our galaxy
by Staff Writers
Madrid, Spain (SPX) Jul 11, 2022

file illustration only

Nitriles, a class of organic molecules with a cyano group, that is, a carbon atom bound with a triple unsaturated bond to a nitrogen atom, are typically toxic. But paradoxically, they are also a key precursor for molecules essential for life, such as ribonucleotides, composed of the nucleobases or 'letters' A, U, C, and G joined to a ribose and phosphate group, which together make up RNA. Now, a team of researchers from Spain, Japan, Chile, Italy, and the US show that a wide range of nitriles occurs in interstellar space within the molecular cloud G+0.693-0.027, near the center of the Milky Way.

Dr Victor M. Rivilla, a researcher at the Center for Astrobiology of the Spanish National Research Council (CSIC) and the National Institute of Aerospace Technology (INTA) in Madrid, Spain, and first author of the new study, said: "Here we show that the chemistry that takes place in the interstellar medium is able to efficiently form multiple nitriles, which are key molecular precursors of the 'RNA World' scenario."

Possible 'RNA-only' world
According to this scenario, life on Earth was originally based on RNA only, and DNA and protein enzymes evolved later. RNA can fulfill both their functions: storing and copying information like DNA, and catalyzing reactions like enzymes. According to the 'RNA World' theory, nitriles and other building blocks for life needn't necessarily all have arisen on Earth itself: they might also have originated in space and 'hitchhiked' to the young Earth inside meteorites and comets during the 'Late Heavy Bombardment' period, between 4.1 and 3.8 billion years ago. In support, nitriles and other precursor molecules for nucleotides, lipids, and amino acids have been found inside contemporary comets and meteors.

But where in space could these molecules have come from? Prime candidates are molecular clouds, which are dense and cold regions of the interstellar medium, and are suitable for the formation of complex molecules. For example, the molecular cloud G+0.693-0.027 has a temperature of around 100 K and is approximately three light years across, with a mass approximately one thousand times that of our Sun. There's no evidence that stars are currently forming inside G+0.693-0.027, although scientists suspect that it might evolve to become a stellar nursery in the future.

"The chemical content of G+0.693-0.027 is similar to those of other star-forming regions in our galaxy, and also to that of solar system objects like comets. This means that its study can give us important insights about the chemical ingredients that were available in the nebula that give rise to our planetary system," explained Rivilla.

Electromagnetic spectra studied
Rivilla and colleagues used two telescopes in Spain to study the electromagnetic spectra emitted by G+0.693-0.027: the 30-meter-wide IRAM telescope Granada, and the 40-meter-wide Yebes telescope in Guadalajara. They detected the nitriles cyanoallene (CH2CCHCN), propargyl cyanide (HCCCH2CN), and cyanopropyne, which hadn't yet been found in G+0.693-0.027, although they had been reported in 2019 in the TMC-1 dark cloud in the constellations Taurus and Auriga, a molecular cloud with very different conditions than G+0.693-0.027.

Rivilla et al. also found possible evidence for the occurence in G+0.693-0.027 of cyanoformaldehyde (HCOCN) and glycolonitrile (HOCH2CN). Cyanoformaldehyde was detected for the first time in the molecular clouds TMC-1 and Sgr B2 in the constellation Sagittarius, and glycolonitrile in the Sun-like protostar IRAS16293-2422 B in the constellation Ophiuchus.

Other recent studies have also reported other RNA precursors inside G+0.693-0.027 such as glycolaldehyde (HCOCH2OH), urea (NH2CONH2), hydroxylamine (NH2OH), and 1,2-ethenediol (C2H4O2), confirming that the interstellar chemistry is able to provide the most basic ingredients for the 'RNA World'.

Nitriles among most abundant chemical families in space
Final author Dr Miguel A Requena-Torres, a lecturer at Towson University in Maryland, US, concluded: "Thanks to our observations over the past few years, including the present results, we now know that nitriles are among the most abundant chemical families in the universe. We have found them in molecular clouds in the center of our galaxy, protostars of different masses, meteorites and comets, and also in the atmosphere of Titan, the largest moon of Saturn."

Second author Dr Izaskun Jimenez-Serra, likewise a researcher at CSIC and INTA, looked ahead: "We have detected so far several simple precursors of ribonucleotides, the building blocks of RNA. But there are still key missing molecules that are hard to detect. For example, we know that the origin of life on Earth probably also required other molecules such as lipids, responsible for the formation of the first cells. Therefore we should also focus on understanding how lipids could be formed from simpler precursors available in the interstellar medium."

Research Report:Molecular precursors of the RNA-world in space: new nitriles in the G+0.693-0.027 molecular cloud


Related Links
Center for Astrobiology of the Spanish National Research Council
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
NASA Rockets Launch from Australia to Seek Habitable Star Conditions
Greenbelt MD (SPX) Jul 07, 2022
A NASA Black Brant IX suborbital sounding rocket was successfully launched at 9:47 a.m. EDT (11:17 p.m. ACST) July 6, 2022, from the Arnhem Space Centre (ASC) in the Northern Territory of Australia. The launch was for the Suborbital Imaging Spectrograph for Transition region Irradiance from Nearby Exoplanet host stars, or SISTINE, mission for the University of Colorado, Boulder. Preliminary analysis shows that good data was received by the science instrument during the flight. The rocket carried t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Terran Orbital completes CAPSTONE's First TCM Burn

Jacobs Awarded $3.9B Engineering and Science Contract at NASA

CAPSTONE deploys from Rocket Lab Lunar Photon into Lunar Transfer Orbit

RIT receives NASA funding to develop new diffractive solar sail concepts

EXO WORLDS
Hypersonics: Developing and defending against missiles far faster than sound

SpaceX ties record for reused Falcon 9 rocket on 50th Starlink launch

To Sicily and beyond: ESA, partners debate future of space transportation

Musk says doing 'best' to boost birth rates

EXO WORLDS
NASA's Perseverance Scouts Mars Sample Return Campaign Landing Sites

Leaving Avanavero - Sol 3530

Searching for Sand Transport

Sometimes things get complicated

EXO WORLDS
Shenzhou-14 Taikonauts conduct in-orbit science experiments, prepare for space walks

Wheels on China's Zhurong rover keep stable with novel material

Construction of China's first commercial spacecraft launch site starts in Hainan

Shenzhou XIII astronauts doing well after returning to Earth

EXO WORLDS
ESA astronaut selection in the final stages

Tech firms unveil plan for 'space-based' 5G network

Kleos Space invests for future growth in the UK

SatixFy Technology enables first 5G link through a LEO constellation

EXO WORLDS
Using lasers and 'tow-trucks', Japanese firms target space debris

Discs for fault detection

ICEYE expands its business to offer complete satellite missions for customers

Smart textiles sense how their users are moving

EXO WORLDS
The life puzzle: the location of land on a planet can affect its habitability

Building blocks for RNA-based life abound at center of our galaxy

NASA Helps Decipher How Some Distant Planets Have Clouds of Sand

Could we eavesdrop on communications that pass through our solar system

EXO WORLDS
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.