Subscribe free to our newsletters via your
. 24/7 Space News .

Breakthrough in nonlinear optics research
by Staff Writers
Sydney, Australia (SPX) Mar 06, 2015

Professor Benjamin Eggleton, Thomas Buttner and Moritz Merklein, researchers from CUDOS at the University of Sydney with the chalcogenide photonic chip. Image courtesy University of Sydney.

A method to selectively enhance or inhibit optical nonlinearities in a chip-scale device has been developed by scientists, led by the University of Sydney. The researchers from the Centre for Ultrahigh bandwidth Devices for Optical Systems, (CUDOS) based at the University of Sydney published their results in Nature Communications.

"This breakthrough is a fundamental advance for research in photonic chips and optical communications," said Moritz Merklein, lead author from the University's School of Physics.

"In optical communications systems optical nonlinearities are often regarded as a nuisance, which corrupts the flow of information. But at the same time there are many useful applications that harness these nonlinear effects. We showed that we can dramatically enhance the optical nonlinearity so that it can be made even more useful. On the other hand we showed that we can completely suppress the same nonlinear optical effects using the same principle. Importantly our experiments were performed in a photonic chip."

To achieve their result the scientists investigated a specific optical nonlinearity that deals with the interaction between light and sound on chip scale devices.

"The effect we looked at (known as stimulated Brillouin scattering) occurs when two optical waves and an acoustic wave interact. If the optical wave travelling along a fibre is disrupted - scattered - by the acoustic wave, it produces a backward traveling wave, called the Stokes wave. This nonlinear scattering process can cause signal distortions in fibre communications and signal processing applications and is well known to limit the capacity of optical fiber communications networks.

"While we want to avoid this disruption this effect has also some unique properties which can be harnessed for important applications in manipulating microwave signals and developing certain types of lasers. So we have shown that we can selectively enhance or inhibit this interaction, depending on the context or application. We think this approach can be generalized to many other optical nonlinearities."

To address this, the researchers introduced a grating structure on to the chip. The grating, which comprises a small modulation in the optical material properties, forms a bandgap for light, which strongly effects the propagation of light, in the same way that semiconductors control the flow of electrons.

When the laser wavelength is tuned close to the edge of the bandgap, the speed of light is reduced. This will greatly enhance the optical nonlinearity. At a slightly different frequency, the bandgap will completely inhibit (or suppress) the optical nonlinearity. The grating can be tuned so that the optical nonlinearity can be turned on and off on-demand.

"On-chip optical research is a thriving and competitive area because of its importance to manipulating classical or quantum signals in small devices, essential for future communications, computing and information processing applications," said CUDOS director and co-author Ben Eggleton.

"I am delighted our CUDOS team at the University of Sydney, in collaboration with our CUDOS colleagues at the Australian National University have achieved this fundamental important result."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
University of Sydney
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

NREL refines method to convert lignin to nylon precursor
Golden CO (SPX) Mar 04, 2015
A new study from the Energy Department's National Renewable Energy Laboratory (NREL) demonstrates the conversion of lignin-derived compounds to adipic acid, an important industrial dicarboxylic acid produced for its use as a precursor to nylon, plasticizers, lubricants, polyesters, and other popular products and chemicals. The demonstration is an important step toward the goal of garnering ... read more

Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

Use of Rover Arm Expected to Resume in a Few Days

Research Suggests Mars Once Had More Water than Earth's Arctic Ocean

Mars Colonization Edges Closer Thanks to MIT's Oxygen Factory

Revolutionary Engine Could Fuel Human Life on Mars

Orion's Launch Abort System Motor Exceeds Expectations

Cheap yen, fading Fukushima fears lure Japan tourists

Dubai to build 'Museum of the Future'

Old-economy sectors are now tech, too: US study

China at technical preparation stage for Mars, asteroid exploration

China's moon rover Yutu functioning but stationary

Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

Russia to use International Space Station till 2024

Arianespace's Soyuz ready for next dual-satellite Galileo launch

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Arianespace certified to ISO 50001 at Guiana Space Center

SpaceX launches two communications satellites

Scientists: Nearby Earth-like planet isn't just 'noise'

Exorings on the Horizon

Planet 'Reared' by Four Parent Stars

Planets Can Alter Each Other's Climates over Eons

The rub with friction

3D printed parts provide cheap, custom alternatives for lab equipment

Game makers lured into virtual worlds

Sony virtual reality head gear set for 2016 release

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.