|
. | . |
|
by Staff Writers Waltham MA (SPX) Mar 04, 2015
Here's the rub with friction -- scientists don't really know how it works. Sure, humans have been harnessing the power of friction since rubbing two sticks together to build the first fire, but the physics of friction remains largely in the dark. In a new paper in Nature Materials, Brandeis University professor Zvonomir Dogic and his lab explored friction at the microscopic level. They discovered that the force generating friction is much stronger than previously thought. The discovery is an important step toward understanding the physics of the cellular and molecular world and designing the next generation of microscopic and nanotechnologies. The research was conducted as part of the Brandeis University Materials Research Science and Engineering Center. Dogic and his team focused on the frictional forces of actin filaments, essential cellular building blocks responsible for many biological functions including muscle contraction, cell movement and cell division. All of these processes require filaments to move and slide against one another, generating friction. Scientists assumed that the frictional forces of these movements were minimal, acting more like weaker hydrodynamic friction -- like pulling an object through water -- than the larger solid friction -- pushing an object across a desk. But Dogic and his team observed the opposite. They developed a new technique to measure friction, and when they dragged two actin filaments against each other, they observed frictional forces nearly 1,000 times greater than expected -- closer to solid friction than hydrodynamic friction. This is due, in part, to interfilament interaction. Imagine filaments as two beaded strings, one on top of the other, pulled in opposite directions. As the strings move, the beads must go up and over their counterparts on the opposite string, generating even more friction. By observing this interfilament interaction, Dogic and his team were able to measure the frictional forces and tune them, altering the forces to include more or less friction. "Before this research, we didn't have a good way of controlling or understanding friction," Dogic says. "We still have a lot more to understand but now, one of our oldest sciences is becoming less opaque."
Related Links Brandeis University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |