Subscribe free to our newsletters via your
. 24/7 Space News .

Exorings on the Horizon
by Staff Writers
Medellin, Colombia (SPX) Mar 05, 2015

Finding planet much larger than jupiter is not common. Only brown dwarf and small stars are that big. In photometric survey, such as that of the Kepler Space Telescope, objects that appear bigger than expected, are normally tagged as "false positives". According to Zuluaga and Kipping, we should start looking carefully on these false positives. True "ringed jewels" could be hidden among this apparent "trash".

Astronomers from the Harvard-Smithsonian Center for Astrophysics and the University of Antioquia (Medellin-Colombia), have devised a novel method for identifying rings around extrasolar planets (exorings). The method is relatively simple and can be used to rapidly analyze large photometric database and to find a list of exoring candidates deserving further analysis.

Exoplanetary science is one of the most prolific sources of astronomical discoveries since the invention of telescopes. Once you get used to a suprising finding, such as the discovery of an Earth-twin, another exciting discovery beckons, capturing the imagination of scientists and non-scientists. Although we cannot predict the next exoplanetary discovery, several breakthroughs, such as the discovery of the first exomoon or the direct image of an Earth-like planet, have been in the line for years. Exorings are also one of these long-awaited discoveries.

Recently, a group of astronomers lead by Matt Kenworthy of the Leiden Observatory and Erik Mamajek of the Rochester University, announced the discovery of a huge disk orbiting the "Super-Jupiter" J1407b. Beside the initial excitement, the actual nature of the object and its "rings" is still debated. The planet could actually be a brown-dwarf and the rings a version in miniature of a protoplanetary disk.

Rings are common in the Solar System. Jupiter, Saturn, Uranus and Neptune have rings of different sizes. Even smaller objects, such as asteroids and cometary nuclei, could have their own rings. Searching for ringed planets beyond the Solar System is as natural as searching for moons and magnetic fields, two other common phenomena associated with planets.

Jorge I. Zuluaga, Associate Professor in the Institute of Physics of the University of Antioquia and Visitor Scholar of the Harvard-Smithsonian Center for Astrophysics (CfA), David Kipping, Menzel Fellow in the CfA and leading expert in exoplanetary research, and two of their dergraduate and undergraduate students, Mario Sucerquia and Jaime Andres Alvarado, have discovered a fast and novel method for identifying exorings in large photometric databases. The method could pave the way for the discovery of the first exorings in the very near future.

Their ideas has been accepted for publication in a forecoming issue of Astrophysical Journal Letters. An eprint version of the paper is already available in the arXiv repository. One of the most exciting aspect of the new method is its simplicity: a ringed-planet will produce a "deeper" and longer transit than that produced by a non-ringed twin (see figure).

But, how can a "deeper" and longer transit of a ringed planet be distinguished from the same effect caused by a larger one?. If a Jupiter-sized planet have a ring, Astronomers on Earth, studying the transit of the planet in front of its host star, will think the object is much larger than it actually is.

Finding planet much larger than jupiter is not common. Only brown dwarf and small stars are that big. In photometric survey, such as that of the Kepler Space Telescope, objects that appear bigger than expected, are normally tagged as "false positives". According to Zuluaga and Kipping, we should start looking carefully on these false positives. True "ringed jewels" could be hidden among this apparent "trash".

A second idea exploits the so-called "Asterodensity-profiling effect". Planetary transits have a wealth of information, not only about the planet, but about the star itself. If we combine the transit depth (that depends on the size of the star) and the duration of the transit (that depends on orbital velocity and hence on the stellar mass) we can estimate the density of the star.

This transit-based stellar density could be then compared with the density measured independently with another method (asteroseismology for example). If they do not coincide, something is really wrong with our assumptions about the planet or its orbit. Zuluaga, Kipping et al. have demonstrated that the presence of Rings leads to a systematic underestimation of stellar density. This effect is called the "Photo-ring effect".

The identification of rings with this novel method is not enough to claim the discovery and confirmation of an exoring. Once a list of suitable candidates be selected, a battery of powerful and efficient methods must be used to actually confirm the existence of exorings around some of those candidates. Even in that case, the new method has the potential to provide the statistical distribution of exorings properties, well before we discover a significant number of them.

"A novel method for identifying exoplanetary ring", Jorge I. Zuluaga (Harvard-Smithsonian CfA/IF/UdeA), David Kipping (Harvard-Smithsonian CfA), Mario Sucerquia (IF/UdeA), Jaime A. Alvarado (IF/UdeA), arXiv e-print: 1502.07818. Accepted for Publication in Astrophysical Journal Letters.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
University of Antioquia
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Planets Can Alter Each Other's Climates over Eons
Moffet Field CA (SPX) Feb 26, 2015
A new study sheds light on how exoplanets in tightly-packed solar systems interact with each other gravitationally by affecting one another's climates and their abilities to support alien life. Because the exoplanets are so close to one another in these compact solar systems, they have tidal influence, much like the Earth and the Moon have on each other. The tides modify the spin rates, ax ... read more

Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

Curiosity confirms methane in Mars' atmosphere

New Flight Software to Fix Memory Issues is Onboard Rover

NASA's Curiosity Mars Rover Drills at 'Telegraph Peak'

How Can We Protect Mars From Earth, While Searching For Life

Old-economy sectors are now tech, too: US study

Diamantino Sforza - Gentleman Farmer of Prince George's County

Water pools in US astronaut's helmet after spacewalk

Korean tech start-ups offer life beyond Samsung

China's moon rover Yutu functioning but stationary

Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

Russia to use International Space Station till 2024

Arianespace certified to ISO 50001 at Guiana Space Center

SpaceX launches two communications satellites

Soyuz-2.1a Rocket Takes Military Satellite to Designated Orbit

Russia's Vostochny Cosmodrome Construction Reaches Home Stretch

Planets Can Alter Each Other's Climates over Eons

The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

US Military Satellite Explodes, Sending Chunks of Debris Into Orbit

UK Space Agency's second CubeSat mission is taking shape

Debris Fills Orbit as US Satellite Explodes

Smart crystallization

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.