. 24/7 Space News .
SPACE TRAVEL
Asteroids help scientists measure distant stars
by Staff Writers
Newark DE (SPX) Apr 16, 2019

file image only

Look up at the sky on a clear night, and you'll see lots of stars. Sometimes they seem almost within reach or at least a short rocket ride. But the closest star to Earth - not counting our sun - is more than four light years away, at a distance of 25 trillion miles.

There are more than 100 billion stars in our Milky Way Galaxy, and, while we have learned much about them, there are relatively few whose size has been directly measured because they are so far away. A star's size is a key piece of information that unlocks many other mysteries about it. Several methods have been used to measure star sizes, yet each has its limitations.

But now an international team, including researchers from the University of Delaware, has discovered a new way to determine the size of stars. Their method draws on the unique capabilities of the Very Energetic Radiation Imaging Telescope Array System (VERITAS) at the Fred Lawrence Whipple Observatory in Arizona - and asteroids that pass by at just the right place and time.

Using the technique, a collaboration of 23 universities and research institutes, led by Tarek Hassan of Deutsches Elektronen-Synchrotron (DESY) and Michael Daniel of the Smithsonian Astrophysical Observatory, has revealed the diameters of a giant star 2,674 light-years away, and a sun-like star at a distance of 700 light-years - the smallest star measured in the night sky to date. The research was reported on Monday, April 15 in the journal Nature Astronomy.

Sizing up a star
"Knowing the size of a star is of overall importance," said Jamie Holder, associate professor in UD's Department of Physics and Astronomy and a co-author of the study. "How big and how hot a star is tells you how it was born, how long it will shine, and how it will eventually die."

Yet almost any star in the sky is too far away to be measured accurately by even the best optical telescopes.

"You just can't resolve the point-like image of a star," Holder said. "It will look fuzzy through your telescope."

To overcome this limitation, scientists use an optical phenomenon called diffraction to measure a star's diameter. When an object passes in front of a star, an event called an "occultation," the shadow and surrounding pattern of light waves can be used to calculate the star's size.

In this pilot study, the object passing in front of the star was an asteroid - a bit of space rubble likely leftover from when the planets were formed about 4.6 billion years ago.

Asteroids travel at an average speed of 15 miles per second, which added to the team's challenge. Normally, the VERITAS telescopes watch for the faint bluish blip that high-energy cosmic particles and gamma rays produce when they race through Earth's atmosphere. While the telescopes do not produce the best optical images, they are extremely sensitive to fast variations of light, including starlight, thanks to their huge mirrored surface, segmented in hexagons like a fly's eye. Holder was involved in the construction and commissioning of the telescopes in 2006, and all of the light sensor modules for the four telescopes were assembled at UD.

UD doctoral student makes pioneering observations
Using the four large VERITAS telescopes on Feb. 22, 2018, the team could clearly detect the diffraction pattern of the star TYC 5517-227-1 as the 60-kilometer (37 mile) asteroid Imprinetta passed by. UD doctoral student Tyler Williamson was there for the observation.

"It was our first time performing this kind of measurement, so we made sure to give ourselves plenty of time to get set up and follow the procedure exactly," said Williamson, who was one of three scientists on the shift that night. "The occultation itself takes only a few seconds, but we point the telescope at the star for about 15 minutes or so to get an estimate of what it looks like before and after the event. If you want to detect a shadow, you need to know what the object looks like without anything blocking it."

Usually, when the crew takes data, a computer gives them a real-time view of what they are collecting as it comes in. But there was no way for them to see this occultation occur. They simply had to point the telescope and wait.

"Nobody was sure the occultation would even be visible from our location in the first place," he said. "The most recent estimate we had going into the night was that there was about a 50 percent chance that the shadow would be cast over our observatory - the asteroid is small, and there were uncertainties in size and trajectory, making it impossible to say for sure where the shadow would fall."

The crew took the data, emailed it to the principal investigators on the project, and called it a night.

"I remember waking up the following afternoon to an email from the PIs with a nice plot showing a clear detection of the shadow," Williamson said. "We were all very excited, and, as observers, we were quite happy to be a part of the result."

The VERITAS telescopes allowed the team to take 300 snapshots every second. From these data, the brightness profile of the diffraction pattern could be reconstructed with high accuracy, resulting in an angular, or apparent, diameter of the star of 0.125 milliarcseconds. Together with its distance of 2,674 light-years, the scientists determined that the star's true diameter is 11 times that of our sun, categorizing it as a red giant star.

According to Holder, this star is about 200 million times farther away from us than the sun, but it's still well within our Milky Way Galaxy, which is 100,000 light years across.

The researchers repeated the feat three months later on May 22, 2018, when asteroid Penelope with a diameter of 88 kilometers occulted the star TYC 278-748-1. The measurements resulted in an angular size of 0.094 milliarcseconds and a true diameter of 2.17 times that of our sun - the smallest star ever measured directly.

But "small" is relative. "This star is a G dwarf, twice as big as our sun and about 700 times farther away from us than our closest star," Holder said.

While the new technique delivers a ten times better resolution than the standard method astronomers have been using, based on lunar occultation, and is twice as sharp as size measurements using interferometric techniques, Holder said the team is working to refine it for even greater accuracy.

"Asteroids pass by Earth every day," Holder said. "VERITAS is gearing up to increase its observations and extend its observation range, building data on a whole new population of stars."


Related Links
University of Delaware
Space Tourism, Space Transport and Space Exploration News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE TRAVEL
Calibrating cosmic mile markers
Washington DC (SPX) Dec 12, 2018
New work from the Carnegie Supernova Project provides the best-yet calibrations for using Type Ia supernovae to measure cosmic distances, which has implications for our understanding of how fast the universe is expanding and the role dark energy may play in driving this process. Led by Carnegie astronomer Chris Burns, the team's findings are published in The Astrophysical Journal. Type Ia supernovae are fantastically bright stellar phenomena. They are violent explosions of a white dwarf - the crys ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
UAE Names First Astronaut to Fly to ISS on Board Russian Soyuz Vehicle

Music for space

Northrop Grumman Carries Technology, Scientific Investigations on Mission to Space Station

UAE mulls buying Soyuz spacecraft to send astronauts to ISS: Roscosmos

SPACE TRAVEL
Roscosmos, S7 Group Mull Developing Reusable Commercial Space Vehicle

Russia Developing Launch Vehicles Similar to Falcon Heavy - Deputy PM

World's largest plane makes first test flight

Drop test proves technologies for reusable microlauncher

SPACE TRAVEL
ExoMars carrier module prepares for final pre-launch testing

First results from the ExoMars Trace Gas Orbiter

Curiosity Tastes First Sample in 'Clay-Bearing Unit'

Tests for the InSight 'Mole'

SPACE TRAVEL
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

SPACE TRAVEL
ESA opening up to new ideas

Canadian Space Agency Sees Science Cooperation With Russia as Area of Growth

Spacecraft Repo Operations

Forging the future

SPACE TRAVEL
ESA oversees teaching of Europe's next top solderers

Rocket break-up provides rare chance to test debris formation

Indian Satellite's Pieces Unlikely to Collide With ISS - Russian Space Agency

Northrop Grumman awarded $3B for 24 Hawkeye early warning aircraft

SPACE TRAVEL
Are brown dwarfs failed stars or super-planets?

Samara scientists research how building material for planets appears in the universe

Oil-eating bacteria found at the bottom of the ocean

Biologists find world's first organism with non-photosynthesizing chlorophyll

SPACE TRAVEL
Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.