. 24/7 Space News .
SPACE TRAVEL
Calibrating cosmic mile markers
by Staff Writers
Washington DC (SPX) Dec 12, 2018

file image

New work from the Carnegie Supernova Project provides the best-yet calibrations for using Type Ia supernovae to measure cosmic distances, which has implications for our understanding of how fast the universe is expanding and the role dark energy may play in driving this process. Led by Carnegie astronomer Chris Burns, the team's findings are published in The Astrophysical Journal.

Type Ia supernovae are fantastically bright stellar phenomena. They are violent explosions of a white dwarf - the crystalline remnant of a star that has exhausted its nuclear fuel - which is part of a binary system with another star.

In addition to being exciting to observe in their own right, Type Ia supernovae are also a vital tool that astronomers use as a kind of cosmic mile marker to infer the distances of celestial objects.

While the precise details of the explosion are still unknown, it is believed that they are triggered when the white dwarf approaches a critical mass, so the brightness of the phenomenon is predictable from the energy of the explosion. The difference between the predicted brightness and the brightness observed from Earth tells us the distance to the supernova.

Astronomers employ these precise distance measurements, along with the speed at which their host galaxies are receding, to determine the rate at which the universe is expanding. Thanks to the finite speed of light, not only can we measure how quickly the universe is expanding right now, but by looking farther and farther out into space, we see further back in time and can measure how fast the universe was expanding in the distant past.

This led to the astonishing discovery in the late-1990s that the universe's expansion is currently speeding up due to the repulsive effect of a mysterious "dark" energy. Improving the distance estimates made using Type Ia supernovae will help astronomers better understand the role that dark energy plays in this cosmic expansion.

"Beginning with its namesake, Edwin Hubble, Carnegie astronomers have a long history of working on the Hubble constant, including vital contributions to our understanding of the universe's expansion made by Alan Sandage and Wendy Freedman," said Observatories Director John Mulchaey.

However, the speed at which the brightness of Type Ia supernova explosions fade away is not uniform. In 1993, Carnegie astronomer Mark Phillips showed that the explosions that take longer to fade away are intrinsically brighter than those that fade away quickly. This correlation, which is commonly referred to as the Phillips relation, allowed a group of astronomers in Chile, including Phillips and Texas A and M astronomer Nicholas Suntzeff, to develop Type Ia supernovae into a precise tool for measuring the expansion of the universe.

Studying the supernovae using the near-infrared part of the spectrum was crucial to this finding. The light from these explosions must travel through cosmic dust to reach our telescopes, and these fine-grained interstellar particles obscure light on the blue end of the spectrum more than they do light from the red end of the spectrum in the same manner as smoke from a forest fire makes everything appear redder. This can trick astronomers into thinking that a supernova is farther away than it is. But working in the infrared allows astronomers to peer more clearly through this dusty veil.

"One of the Carnegie Supernova Project's primary goals has been to provide a reliable, high-quality sample of supernovae and dependable methods for inferring their distances," said lead author Burns.

"The quality of this data allows us to better correct our measurements to account for the dimming effect of cosmic dust" added Mark Phillips, an astronomer at Carnegie's Las Campanas Observatory in Chile and a co-author on the paper.

The calibration of these mile markers is crucially important, because there are disagreements between different methods for determining the universe's expansion rate. The Hubble constant can independently be estimated using the glow of background radiation left over from the Big Bang. This cosmic microwave background radiation has been measured with exquisite detail by the Planck satellite, and it gives astronomers a more slowly expanding universe than when measured using Type Ia supernovae.

"This discrepancy could herald new physics, but only if it's real," Burns explained. "So, we need our Type Ia supernova measurements to be as accurate as possible, but also to identify and quantify all sources of error."

Research Report: "The Carnegie Supernova Project: Absolute Calibration and the Hubble Constant," Christopher R. Burns et al., 2018 Dec. 11, Astrophysical Journal


Related Links
Carnegie Institution For Science
Space Tourism, Space Transport and Space Exploration News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE TRAVEL
Russian scientists develop high-precision laser for satellite navigation
Saint Petersburg, Russia (SPX) Oct 04, 2018
Scientists from ITMO University developed a laser for precise measurement of the distance between the Moon and Earth. Short pulse duration and high power of this laser help to reduce error in determining the distance to the Moon to just a few millimeters. This data can be used to specify the coordinates of artificial satellites in accordance with the lunar mass influence to make navigation systems more accurate. The study was published in Optics Letters. Both GPS and GLONASS systems are base ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
Four NASA-sponsored experiments set to launch on Virgin Galactic spacecraft

NASA's Voyager 2 Probe Enters Interstellar Space

Virgin Galactic's new flight test to soar closer to edge of space

We're all ears as Voyager 2 goes Interstellar

SPACE TRAVEL
NASA Sounding Rockets Carry TRICE-2 over Norwegian Sea

Roscosmos to submit super-heavy rocket project to Government

Dragon attached to Station, returns to Earth in January

China puts 2 Saudi satellites into orbit

SPACE TRAVEL
NASA's InSight takes its first selfie

InSight's robotic arm ready for some lifting on Mars

NASA's InSight lander 'hears' wind on Mars

NASA's Mars InSight Flexes Its Arm

SPACE TRAVEL
China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

SPACE TRAVEL
CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

Roscosmos Targeted by Info Attack to Hamper Revival of Space Industry in Russia

SAS Signs Distribution Agreement with GlobalSat Group

SPACE TRAVEL
Radiation experiment flies on record-setting SpaceX launch dedicated entirely to small satellites

Astroscale enters technical cooperation with European Space Agency

Supercomputers without waste heat

Multifunctional dream ceramic matrix composites are born

SPACE TRAVEL
The epoch of planet formation, times twenty

Helium exoplanet inflated like a balloon, research shows

Common ground discovered in planet-forming disks

UNLV study unlocks clues to how planets form

SPACE TRAVEL
Record Setting Course-Correction Puts New Horizons on Track to Kuiper Belt Flyby

NASA's Juno mission halfway to Jupiter science

Radio JOVE From NASA: Tuning In to Your Local Celestial Radio Show

The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.