. | . |
Artemis I: demonstrating the capabilities of NASA's United Networks by Danny Baird for GSFC News Greenbelt MD (SPX) Oct 09, 2020
On our journey forward to the Moon and on to Mars, NASA must test our technologies and capabilities to ensure astronaut safety. The Artemis I mission will be an uncrewed flight test of the Orion spacecraft that places a human-rated crew vehicle in lunar orbit for the first time since the Apollo missions of the 1960s and 70s. The mission will showcase the capabilities of both Orion and the Space Launch System (SLS), NASA's powerful new rocket, which will launch Artemis missions from Kennedy Space Center in Florida. Artemis I will demonstrate NASA's networks' comprehensive services for journeys to lunar orbit. The mission requires all three of NASA's major networks to work in tandem, providing different communications and tracking service levels as Orion leaves Earth, orbits the Moon, and returns safely home. Communications services allow flight controllers in mission control centers to send commands to the spacecraft and receive data from Orion and SLS systems. Tracking, or navigation, services enable the flight controllers to see where the spacecraft are along their trajectory through space.
NASA's Near Earth Network The NEN's Launch Communications Segment (LCS) will provide critical links to both Orion and SLS during prelaunch and launch of Artemis I. Three ground stations along Florida's space coast comprise LCS, which was designed to meet the specific needs of the SLS launch vehicle and will grow to support other missions after Artemis I. Specifically, the first two stations along the rocket's flight path will provide uplink and downlink communications between the rocket and mission controllers. In the final phases of ascent, the third station will downlink high rate telemetry and video from SLS while Orion connects to the satellites in NASA's Space Network. Despite the name suggesting the network's services are limited to "near Earth," the NEN's navigation services extend to Orion's journey from low-Earth orbit to the Moon and back through ground stations in Santiago, Chile, and Hartebeesthoek, South Africa. These NEN stations will support navigation data before and after the outbound trajectory correction burns that ensure the spacecraft stays on a path towards the Moon. The NEN will also provide navigation services during Orion's outbound powered flyby burn that occurs at the mission's closest approach to the Moon, setting the stage for final insertion into lunar orbit. For Orion's return from the Moon, the NEN will provide navigation data for departure from lunar orbit and the return power fly-by burn that will place Orion on a course back for Earth, during which the NEN will also provide navigation services.
NASA's Space Network Beginning at the launchpad, the Space Network will maintain a connection with Orion and the Interim Cryogenic Propulsion Stage (ICPS). ICPS provides the power to accelerate the spacecraft fast enough to overcome the pull of Earth's gravity and set in on a precise trajectory to the Moon. The Space Network will continue service until Orion and ICPS leave TDRS coverage, when NASA's Deep Space Network (DSN) takes over. On Orion's return to Earth, the Space Network will facilitate communications from the final return trajectory correction burn through splashdown in the Pacific Ocean and recovery of the capsule. The return trajectory correction burn ensures Orion enters the atmosphere at just the right moment, allowing NASA to land the craft safely.
NASA's Deep Space Network The NEN and DSN tag team navigation for Orion so that engineers can employ a technique called three-way Doppler tracking. Using this method - with two ground stations on Earth in contact with Orion simultaneously, one each from NEN and DSN - NASA can triangulate Orion's location relative to the ground stations. At the Moon, DSN will enable insertion into distant retrograde orbit (DRO). DRO is a highly stable orbit in which Orion travels retrograde, or opposite, from the direction the Moon travels around Earth. The DSN will maintain communications with Orion while in DRO and during the burns for DRO departure, return power fly-by, return transit and the final return trajectory correction burn, with assistance from the Space Network. The DSN will also help facilitate communications for all three of the mission's CubeSat deployment stops. The CubeSats are small satellites that will be deployed along Orion's trajectory to provide additional research opportunities for scientists and engineers. After deployment, many of the CubeSats will also communicate through the DSN. The networks supporting Artemis receive programmatic oversight from NASA's Space Communications and Navigation (SCaN) program office. In addition to providing communications services to missions, SCaN develops the technologies and capabilities that will help propel NASA to the Moon, Mars and beyond.
NASA, Boeing announce crew changes for Starliner Crew Flight Test Houston TX (SPX) Oct 08, 2020 Veteran NASA astronaut Barry "Butch" Wilmore will join astronauts Mike Fincke and Nicole Mann for NASA's Boeing Crew Flight Test, the inaugural crewed flight of the CST-100 Starliner launching to the International Space Station in 2021. Wilmore will take the place of Boeing astronaut Chris Ferguson on the flight test as part of NASA's Commercial Crew Program. Ferguson decided not to fly for personal reasons. Wilmore has been training side-by-side with the crew since being named the sole back ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |