. 24/7 Space News .
TECH SPACE
Argonne and CERN weigh in on the origin of heavy elements
by Staff Writers
Lemont IL (SPX) Mar 31, 2020

A look inside the ISOLDE Solenoid Spectrometer at CERN.

A long-held mystery in the field of nuclear physics is why the universe is composed of the specific materials we see around us. In other words, why is it made of "this" stuff and not other stuff?

Specifically of interest are the physical processes responsible for producing heavy elements - like gold, platinum and uranium - that are thought to happen during neutron star mergers and explosive stellar events.

Scientists from the U.S. Department of Energy's (DOE) Argonne National Laboratory led an international nuclear physics experiment conducted at CERN, the European Organization for Nuclear Research, that utilizes novel techniques developed at Argonne to study the nature and origin of heavy elements in the universe. The study may provide critical insights into the processes that work together to create the exotic nuclei, and it will inform models of stellar events and the early universe.

The nuclear physicists in the collaboration are the first to observe the neutron-shell structure of a nucleus with fewer protons than lead and more than 126 neutrons - "magic numbers" in the field of nuclear physics.

At these magic numbers, of which 8, 20, 28, 50 and 126 are canonical values, nuclei have enhanced stability, much as the noble gases do with closed electron shells. Nuclei with neutrons above the magic number of 126 are largely unexplored because they are difficult to produce. Knowledge of their behavior is crucial for understanding the rapid neutron-capture process, or r-process, that produces many of the heavy elements in the universe.

The r-process is thought to occur in extreme stellar conditions such as neutron-star mergers or supernovae. These neutron rich environments are where nuclei can rapidly grow, capturing neutrons to produce new and heavier elements before they have chance to decay.

This experiment focused on the mercury isotope 207Hg. The study of 207Hg could shed light on the properties of its close neighbors, nuclei directly involved in key aspects of the r-process.

"One of the biggest questions of this century has been how the elements formed at the beginning of the universe," said Argonne physicist Ben Kay, the lead scientist on the study. "It's difficult to research because we can't just go dig up a supernova out of the earth, so we have to create these extreme environments and study the reactions that occur in them."

To study the structure of 207Hg, the researchers first used the HIE-ISOLDE facility at CERN in Geneva, Switzerland. A high-energy beam of protons was fired at a molten lead target, with the resulting collisions producing hundreds of exotic and radioactive isotopes.

They then separated 206Hg nuclei from the other fragments and used CERN's HIE-ISOLDE accelerator to create a beam of the nuclei with the highest energy ever achieved at that accelerator facility. They then focused the beam at a deuterium target inside the new ISOLDE Solenoidal Spectrometer (ISS).

"No other facility can make mercury beams of this mass and accelerate them to these energies," said Kay. "This, coupled with the outstanding resolving power of the ISS, allowed us to observe the spectrum of excited states in 207Hg for the first time."

The ISS is a newly-developed magnetic spectrometer that the nuclear physicists used to detect instances of 206Hg nuclei capturing a neutron and becoming 207Hg. The spectrometer's solenoidal magnet is a recycled 4-Tesla superconducting MRI magnet from a hospital in Australia. It was moved to CERN and installed at ISOLDE, thanks to a UK-led collaboration between University of Liverpool, University of Manchester, Daresbury Laboratory and collaborators from KU Leuven in Belgium.

Deuterium, a rare heavy isotope of hydrogen, consists of a proton and neutron. When 206Hg captures a neutron from the deuterium target, the proton recoils. The protons emitted during these reactions travel to the detector in the ISS, and their energy and position yield key information on the structure of the nucleus and how it is bound together. These properties have a significant impact on the r-process, and the results can inform important calculations in models of nuclear astrophysics.

The ISS uses a pioneering concept suggested by Argonne distinguished fellow John Schiffer that was built as the lab's helical orbital spectrometer, HELIOS - the instrument that inspired the development of the ISS spectrometer. HELIOS has allowed exploration of nuclear properties that were once impossible to study, but thanks to HELIOS, have been carried out at Argonne since 2008. CERN's ISOLDE facility can produce beams of nuclei that complement those that can be made at Argonne.

For the past century, nuclear physicists have been able to gather information about nuclei from the study of collisions where light ion beams hit heavy targets. However, when heavy beams hit light targets, the physics of the collision becomes distorted and more difficult to parse. Argonne's HELIOS concept was the solution to removing this distortion.

"When you've got a cannonball of a beam hitting a fragile target, the kinematics change, and the resulting spectra are compressed," said Kay. "But John Schiffer realized that when the collision occurs inside a magnet, the emitted protons travel in a spiral pattern towards the detector, and by a mathematical 'trick', this unfolds the kinematic compression, resulting in an uncompressed spectrum that reveals the underlying nuclear structure."

The first analyses of the data from the CERN experiment confirm the theoretical predictions of current nuclear models, and the team plans to study other nuclei in the region of 207Hg using these new capabilities, giving deeper insights into the unknown regions of nuclear physics and the r-process.

Research Report: "First exploration of neutron shell structure below lead and beyond N = 126"


Related Links
Argonne National Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Creating custom light using 2D materials
Geneva, Switzerland (SPX) Feb 24, 2020
Finding new semi-conductor materials that emit light is essential for developing a wide range of electronic devices. But making artificial structures that emit light tailored to our specific needs is an even more attractive proposition. However, light emission in a semi-conductor only occurs when certain conditions are met. Researchers from the University of Geneva (UNIGE), Switzerland, in collaboration with the University of Manchester, have discovered an entire class of two-dimensional materials ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Insects, seaweed and lab-grown meat could be the foods of the future

NASA leadership assessing mission impacts of coronavirus

How Space Station research is helping NASA's plans to explore the Moon and Beyond

Mission Control adjusts to coronavirus conditions

TECH SPACE
NASA, SpaceX plan return to human spaceflight from U.S. soil in mid-May

NASA suspends work on Moon rocket due to virus

SpaceX plans first manned flight to space station in May

China develops new system to quickly find fallen rocket debris

TECH SPACE
NASA's Mars Perseverance Rover Gets Its Sample Handling System

Waves in thin Martian air with wide effects

ExoMars to take off for the Red Planet in 2022

Europe-Russia delay mission to find life on Mars

TECH SPACE
China's Long March-7A carrier rocket fails in maiden flight

China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

TECH SPACE
GMV's space business grows by 30 percent

SpaceX launches Starlink mission from Florida

NewSpace Book on 10 Years of Commercial Space and Children's Book on Space Released

Coronavirus and ESA's duty of care

TECH SPACE
Print sprint: Bosnians 3D print face-shields to combat coroanvirus

Creating custom light using 2D materials

Raytheon awarded $17 million for dual band radar spares for USS Ford

Time-resolved measurement in a memory device

TECH SPACE
Salmon parasite is world's first non-oxygen breathing animal

Snapping A Space Shot

The Strange Orbits of 'Tatooine' Planetary Disks

Observed: An exoplanet where it rains iron

TECH SPACE
Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.