. | . |
Antarctic Selfie's Journey to Space via Disruption Tolerant Networking by Erin Mahoney for NASA Science News Washington DC (SPX) Nov 30, 2017
NASA is boosting cyber to space with benefits for Earth. On Nov. 20, 2017, a selfie snapped from the National Science Foundation's McMurdo Station in Antarctica demonstrated technology that can enable the future interplanetary internet. Called Disruption Tolerant Networking (DTN), the technology is NASA's solution to reliable interplanetary data transmissions when vast distances or alignments of celestial bodies may disrupt communications. Though Antarctic researchers are not communicating across interplanetary distances, McMurdo's remote location and minimal infrastructure make it an ideal candidate to benefit from this technology. DTN bundles data and transmits as many bundles as it can when a communication path opens. If a bundle fails to transmit, it goes into storage and waits for the next communication path to open, then sends it. If the bundles were all part of a single file, the file can be reassembled at the final destination.
How did an Antarctic selfie get to the space station via DTN? The bundles were forwarded to the space station via another TDRS link where they were then routed to the Telescience Resource Kit (TReK) demonstration payload. The final DTN node extracted the picture data from the DTN bundles that originated from Antarctica. The payload reassembled the original picture and displayed it onboard the station. "This demonstration really highlights 'internetworking' using DTN," said David Israel, a space communications architect at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "DTN provides the means for routing data between two endpoints within two individual networks that cannot have a continuous path between them." Unlike the familiar computer-to-computer IP connection, the technology allows for temporary disruptions and long delays like those that can be experienced by spacecraft as well as remote locations on Earth. "We're cutting our teeth on this software, in real field conditions," said Patrick Smith, technology development manager for polar research support with the NSF-managed U.S. Antarctic Program. "The simplicity of transmitting from a smart phone could have significant implications for increasing and diversifying the science we support in the polar regions. This represents a vision of how our remote autonomous field research instrumentation might operate one day." Data transmission has always been a challenge for Antarctic researchers. With scant civil infrastructure and very few providers able to service the geographic South Pole, the data demand far exceeds the combined network capabilities for research stations on the continent. Communication disruptions can have serious consequences for researchers, because data must be regularly assessed with colleagues for quality assurance and adjustments. "The Antarctic is an excellent analog for space operations," Smith noted. "Researchers are conducting important scientific investigations, operating in extreme conditions, with minimal infrastructure, so it's not surprising that we are using NASA space technology to advance science in the Antarctic." Israel suggests there are many more potential terrestrial applications for DTN. "Any remote location on Earth that experiences limited network connectivity is a candidate for DTN," he said. "Relief to disaster zones could potentially be improved with better communications using the software on mobile devices by maximizing the use of intermittent access or spotty availability." The most recent demonstration provided an opportunity for both NASA and NSF to exercise DTN in a scenario analogous to future applications. NASA hopes to expand DTN use and discover even more applications. The agency is working to standardize DTN through the Consultative Committee for Space Data Systems and with the Internet Engineering Task Force, and has released implementations of DTN protocols through open-source software. NASA's Advanced Exploration Systems (AES) DTN team is led out of NASA's Johnson Space Center with support from Goddard Space Flight Center, the Jet Propulsion Laboratory, Marshall Space Flight Center, the MITRE Corporation and the Johns Hopkins University Applied Physics Lab. The team works with the Space Communications and Navigation (SCaN) division at NASA Headquarters to integrate DTN with NASA's communication networks, including the Deep Space Network, Near Earth Network and Space Network, to support future missions.
Edinburgh UK (SPX) Nov 29, 2017 New high-resolution maps of the complex landscape beneath a major West Antarctic glacier will be valuable for forecasting global sea level rise, researchers say. Radar surveys of the land beneath Pine Island Glacier, obtained by snowmobile, have revealed a surprisingly diverse, mountainous landscape under the ice. The findings are significant as Pine Island Glacier is the fastest mel ... read more Related Links Disruption Tolerant Networking Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |