. 24/7 Space News .
STELLAR CHEMISTRY
Ancient Stardust Sheds Light on the First Stars
by Staff Writers
Munich, Germany (SPX) Mar 09, 2017


This artist's impression shows what the very distant young galaxy A2744_YD4 might look like. Observations using ALMA have shown that this galaxy, seen when the Universe was just 4% of its current age, is rich in dust. Such dust was produced by an earlier generation of stars and these observations provide insights into the birth and explosive deaths of the very first stars in the Universe. Image courtesy ESO/M. Kornmesser. For a larger version of this image please go here.

Astronomers have used ALMA to detect a huge mass of glowing stardust in a galaxy seen when the universe was only four percent of its present age. This galaxy was observed shortly after its formation and is the most distant galaxy in which dust has been detected. This observation is also the most distant detection of oxygen in the universe. These new results provide brand-new insights into the birth and explosive deaths of the very first stars.

An international team of astronomers, led by Nicolas Laporte of University College London, have used the Atacama Large Millimeter/submillimeter Array to observe A2744_YD4, the youngest and most remote galaxy ever seen by ALMA. They were surprised to find that this youthful galaxy contained an abundance of interstellar dust - dust formed by the deaths of an earlier generation of stars.

Follow-up observations using the X-shooter instrument on ESO's Very Large Telescopeconfirmed the enormous distance to A2744_YD4. The galaxy appears to us as it was when the universe was only 600 million years old, during the period when the first stars and galaxies were forming.

"Not only is A2744_YD4 the most distant galaxy yet observed by ALMA," comments Nicolas Laporte, "but the detection of so much dust indicates early supernovae must have already polluted this galaxy."

Cosmic dust is mainly composed of silicon, carbon and aluminium, in grains as small as a millionth of a centimetre across. The chemical elements in these grains are forged inside stars and are scattered across the cosmos when the stars die, most spectacularly in supernova explosions, the final fate of short-lived, massive stars. Today, this dust is plentiful and is a key building block in the formation of stars, planets and complex molecules; but in the early universe - before the first generations of stars died out - it was scarce.

The observations of the dusty galaxy A2744_YD4 were made possible because this galaxy lies behind a massive galaxy cluster called Abell 2744. Because of a phenomenon called gravitational lensing, the cluster acted like a giant cosmic "telescope" to magnify the more distant A2744_YD4 by about 1.8 times, allowing the team to peer far back into the early universe.

The ALMA observations also detected the glowing emission of ionised oxygen from A2744_YD4. This is the most distant, and hence earliest, detection of oxygen in the universe, surpassing another ALMA result from 2016.

The detection of dust in the early universe provides new information on when the first supernovae exploded and hence the time when the first hot stars bathed the universe in light. Determining the timing of this "cosmic dawn" is one of the holy grails of modern astronomy, and it can be indirectly probed through the study of early interstellar dust.

The team estimates that A2744_YD4 contained an amount of dust equivalent to 6 million times the mass of our Sun, while the galaxy's total stellar mass - the mass of all its stars - was 2 billion times the mass of our Sun. The team also measured the rate of star formation in A2744_YD4 and found that stars are forming at a rate of 20 solar masses per year - compared to just one solar mass per year in the Milky Way.

"This rate is not unusual for such a distant galaxy, but it does shed light on how quickly the dust in A2744_YD4 formed," explains Richard Ellis (ESO and University College London), a co-author of the study. "Remarkably, the required time is only about 200 million years - so we are witnessing this galaxy shortly after its formation."

This means that significant star formation began approximately 200 million years before the epoch at which the galaxy is being observed. This provides a great opportunity for ALMA to help study the era when the first stars and galaxies "switched on" - the earliest epoch yet probed. Our Sun, our planet and our existence are the products - 13 billion years later - of this first generation of stars. By studying their formation, lives and deaths, we are exploring our origins.

"With ALMA, the prospects for performing deeper and more extensive observations of similar galaxies at these early times are very promising," says Ellis.

And Laporte concludes: "Further measurements of this kind offer the exciting prospect of tracing early star formation and the creation of the heavier chemical elements even further back into the early universe."

STELLAR CHEMISTRY
Revealing the origin and nature of the outskirts of stellar megalopolises
Santa Cruz de Tenerife, Spain (SPX) Mar 07, 2017
Galaxies have dramatically grown in size since the early Universe, and elliptical galaxies, in particular, are the largest galaxies in both size and mass. What is the main driver behind the late growth of their outer parts was the question that motivated this study. With disc galaxies, like our Milky Way, it is fairly easy to identify their distinct parts: the central bulge, the disc with ... read more

Related Links
ALMA at ESO
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
India has capability to develop space station, says top official

Orion spacecraft achieves key safety milestone

The NASA Imager Dentists Use Daily

Marshall shakes, packs, ships and tracks NASA payloads

STELLAR CHEMISTRY
Blue Origin shares video of New Glenn rocket

Europe launches fourth Earth monitoring satellite

Elon Musk: tech dreamer reaching for sun, moon and stars

ULA launches NROL-79 payload for NRO

STELLAR CHEMISTRY
New evidence for a water-rich history on Mars

Humans May Quickly Evolve on Mars, Biologist Claims

NASA Orbiter Steers Clear of Mars Moon Phobos

Remnants of a mega-flood on Mars

STELLAR CHEMISTRY
Riding an asteroid: China's next space goal

China's 1st cargo spacecraft to make three rendezvous with Tiangong-2

China to launch space station core module in 2018

Thinking Big: China Hopes to Conduct 2nd Mission to Mars by 2030

STELLAR CHEMISTRY
Iridium Safety Voice Communications Installs Surge Past 500 Aircraft

Eutelsat Signs up for Blue Origin's New Glenn Launcher

Turkey Moves Closer to Launching Own Space Agency

OneWeb, Intelsat merge to advance satellite internet

STELLAR CHEMISTRY
Aireon and Thales Begin Validation of Space-Based ADS-B Data

Space surveillance radar system fully operational

Coffee-ring effect leads to crystallization control

3-D printing with plants

STELLAR CHEMISTRY
Hunting for giant planet analogs in our own backyard

Faraway Planet Systems Are Shaped Like the Solar System

Biochemical 'fossil' shows how life may have emerged without phosphate

The missing link in how planets form

STELLAR CHEMISTRY
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.