. 24/7 Space News .
EARLY EARTH
A rocky fate for greenhouse gases
by Staff Writers
Tsukuba, Japan (SPX) Dec 01, 2021

file illustration

Scientists at the University of Tsukuba used a sophisticated set of experimental tests, including synchrotron X-ray scattering and quantum computer modeling, to study the effect of temperature on the structure of magnesium carbonate. This work may lead to more efficient carbon capture technologies that lock carbon dioxide inside rocks as a way to combat climate change.

One of the primary drivers of anthropogenic climate change is the overabundance of carbon dioxide (CO2) gas in the atmosphere from the burning of fossil fuels. This CO2 alters the balance of the planet's solar energy input and output by permitting visible light from the sun to reach the Earth but preventing some of the reradiated infrared energy from leaving.

Many approaches for carbon capture have been proposed, but most are impractical or prone to the carbon dioxide leaking out over time. A solution that permanently removes it from the ecosystem would be an invaluable tool to diminish the intensity of global warming.

Now, a team of scientists at the University of Tsukuba have worked on advancing the concept of carbon capture via mineral trapping. In this approach, carbon dioxide gas is made to precipitate as part of a rocky crystal or powder, such as magnesium carbonate hydrates. "More than 70% of the total carbon in the Earth's crust is locked away in the form of carbonates," explains author Professor Atsushi Kyono.

The crystal structure of hydrated minerals can vary based on the amount of water molecules incorporated, which in turn can depend on the temperature. For example, the nesquehonite (MgCO3-3H2O) form can become hydromagnesite [Mg5(CO3)4(OH)2-4H2O] when the water content increases. These configurations can have markedly different properties. The water molecules in nesquehonite are highly interconnected by a hydrogen-bonding network, while in contrast, no network is present in the hydromagnesite structure.

To study the impact of temperature on amorphous magnesium carbonate (AMC), a precursor of the crystalline magnesium carbonate hydrate materials, the team used advanced laboratory methods, including synchrotron X-ray scattering and quantum chemical calculations. "We found that the short-range order was slightly modified with temperature, but the medium-range order of AMC remained unchanged," Professor Kyono explains.

This research helps provide more context for scientists working on carbon capture methods by revealing that the physical properties of some easily obtainable precursor materials can be modified by temperature.

Research Report: "Temperature dependence of amorphous magnesium carbonate structure studied by PDF and XAFS analyses"


Related Links
University of Tsukuba
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
New research explains Earth's peculiar chemical composition
Tokyo, Japan (SPX) Dec 01, 2021
Earth's surface environment hosts large reservoirs of hydrogen (H, mainly in the form of water, H2O), nitrogen (in atmospheric N2) and carbon (mainly in carbonate rocks). H, N and C are sometimes called "volatile" elements, or simply "volatiles," by geoscientists because many of the simple compounds they form are gases at standard temperature and pressure. However, the distribution of these volatiles on Earth is skewed relative to their abundance in the materials Earth is thought to have formed. T ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Tech 2022 trends: Meatless meat, Web 3.0, Big Tech battles

NASA Leadership visits Marshall to discuss Artemis, future exploration

Vice President Highlights STEM in First National Space Council Meeting

Dragons-Eye View

EARLY EARTH
SpaceX Starlink launch from Florida delayed to Thursday

Pulsar Fusion Demonstrates Green Mach-7 rocket in Switzerland

Elon Musk: SpaceX faces possible bankruptcy because of engine woes

Rocket Lab Announces Neutron Development Update to be Provided on December 2, 2021

EARLY EARTH
Guiding Tianwen-1 to China's first successful Mars rover landing

For the curious there's always room for seconds

Curiosity sends a picture postcard from Mars

ASU team celebrates 20th anniversary of NASA's Mars Odyssey Orbiter arrival at the Red Planet

EARLY EARTH
Tianzhou cargo craft to help advance science

Rocket industrial park put into operation in Wuhan

Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

EARLY EARTH
Carrier rocket takes off from Sichuan province

ESA helps Greece to boost its space investments

Apply now to the brand new ESA Junior Professional Programme!

FCC Validates SES Phase I Accelerated C-band Clearing and Relocation Certification

EARLY EARTH
Researchers develop novel 3D printing technique to engineer biofilms

Light-powered soft robots could suck up oil spills

Researchers team up to get a clearer picture of molten salts

Reshaping the plastic lifecycle into a circle

EARLY EARTH
New possibilities for life at the bottom of Earth and other Oceanic Worlds

Prototype SETI hardware gets first data from VLA

Orbital harmony limits late arrival of water on TRAPPIST-1 planets

Hubble Finds Flame Nebula's Searing Stars May Halt Planet Formation

EARLY EARTH
Are Water Plumes Spraying from Europa

Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.