. 24/7 Space News .
STELLAR CHEMISTRY
A new study reveals 'hidden' phases of matter through the power of light
by Staff Writers
Philadelphia PA (SPX) Jun 17, 2019

A new study reveals a "hidden" phase of strontium titanate. On the left, extremely fast pulses of light excites atoms within the crystal structure (red arrows), which shifts the material into a new, ferroelectric phase. Vibrations of other atoms then work to stabilize the hidden phase (right panels).

Most people think of water as existing in only one of three phases: Solid ice, liquid water, or gas vapor. But matter can exist in many different phases--ice, for example, has more than ten known phases, or ways that its atoms can be spatially arranged. The widespread use of piezoelectric materials, such as microphones and ultrasound, is possible thanks to a fundamental understanding of how an external force, like pressure, temperature, or electricity, can lead to phase transitions that imbue materials with new properties.

A new study finds that a metal oxide has a "hidden" phase, one that gives the material new, ferroelectric properties, the ability to separate positive and negative charges, when it is activated by extremely fast pulses of light. The research was led by MIT researchers Keith A. Nelson, Xian Li, and Edoardo Baldini, in collaboration with Andrew M. Rappe and Penn graduate students Tian Qiu and Jiahao Zhang. The findings were published in Science.

Their work opens the door to creating materials where one can turn on and off properties in a trillionth of a second with the flick of a switch, now with much better control. In addition to changing electric potential, this approach could be used to change other aspects of existing materials--turning an insulator into a metal or flipping its magnetic polarity, for example.

"It's opening a new horizon for rapid functional material reconfiguration," says Rappe.

The group studied strontium titanate, a paraelectric material used in optical instruments, capacitors, and resistors. Strontium titanate has a symmetric and nonpolar crystal structure that can be "pushed" into a phase with a polar, tetragonal structure with a pair of oppositely charged ions along its long axis.

Nelson and Rappe's previous collaboration provided the theoretical basis for this new study, which relied on Nelson's experience using light to induce phase transitions in solid materials along with Rappe's knowledge in developing atomic-level computer models.

"[Nelson is] the experimentalist, and we're the theorists," says Rappe. "He can report what he thinks is happening based on spectra, but the interpretation is speculative until we provide a strong physical understanding of what happened."

With recent improvements in technology and additional knowledge gained from working with terahertz frequencies, the two chemists set out to see if their theory, now more than one decade old, held true. Rappe's challenge was to complement Nelson's experiments with an accurate computer-generated version of strontium titanate, with every single atom tracked and represented, that responds to light in the same manner as the material being tested in the lab.

They found that when strontium titanate is excited with light, the ions are pulled in different directions, with positively charged ions moving in one direction and negatively charged ions in the other. Then, instead of the ions immediately falling back into place, the way a pendulum would after it's been pushed, vibrational movements induced in the other atoms prevent the ions from swinging back immediately.

It's as if the pendulum, at the moment that it reaches the maximum height of its oscillation, is diverted slightly off course where a small notch holds it in place away from its initial position.

Thanks to their strong history of collaboration, Nelson and Rappe were able to go back and forth from the theoretical simulations to the experiments, and vice versa, until they found experimental evidence that showed that their theory held true.

"It's been a really awesome collaboration," says Nelson. "And it illustrates how ideas can simmer and then return in full force after more than 10 years."

The two chemists will collaborate with engineers on future applications-driven research, such as creating new materials that have hidden phases, changing light-pulse protocols to create longer-lasting phases, and seeing how this approach works for nanomaterials. For now, both researchers are excited about their results and where this fundamental breakthrough could lead to in the future.

"It's the dream of every scientist: To hatch an idea together with a friend, to map out the consequence of that idea, then to have a chance to translate it into something in the lab, it's extremely gratifying. It makes us think we're on the right track towards the future," says Rappe.

Research paper


Related Links
University of Pennsylvania
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Nature inspires a novel new form of computing, using light
Hamilton, Canada (SPX) May 27, 2019
McMaster researchers have developed a simple and highly novel form of computing by shining patterned bands of light and shadow through different facets of a polymer cube and reading the combined results that emerge. The material in the cube reads and reacts intuitively to the light in much the same way a plant would turn to the sun, or a cuttlefish would change the color of its skin. The researchers are graduate students in chemistry supervised by Kalaichelvi Saravanamuttu, an associate prof ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
London leads Europe for tech investment: study

Cosmonauts complete spacewalk at International Space Station

NASA Navigation Tech Shows Timing Really Is Everything

Russian cosmonauts remove a towel that spent 10 years on surface of ISS

STELLAR CHEMISTRY
U.S Army prepares to test hypersonic weapon in 2020

All engines GO for Vega-C maiden flight

China conducts first sea-based space rocket launch

SpaceX Cargo Spacecraft Splashes Down in Pacific Ocean with Scientific Research

STELLAR CHEMISTRY
InSight's Team Tries New Strategy to Help the "Mole"

Mars on Earth - what next?

Massive Mars crater could have hosted life

'Fettuccine' may be most obvious sign of life on Mars

STELLAR CHEMISTRY
Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

STELLAR CHEMISTRY
NewSpace could eliminate Sun-Synchronous orbits

ISRO sets up space tech incubation centre at NITT

Russian space sector plagued by astronomical corruption

Airbus wins three satellite deal from Inmarsat for revolutionary spacecraft

STELLAR CHEMISTRY
Mantis shrimp shield inspires lightweight, impact-resistant materials

One more time: 2020 Olympic podiums to be made from recycled plastic

Aluminum is the new steel: NUST MISIS scientists made it stronger than ever before

Dashing the dream of ideal 'invisibility' cloaks for stress waves

STELLAR CHEMISTRY
Exomoons may be home to extra-terrestrial life

Physicists Discover New Clue to Planet Formation

Bacteria's protein quality control agent offers insight into origins of life

Pair of Fledgling Planets Seen Growing Around Young Star

STELLAR CHEMISTRY
On Pluto the Winter is approaching, and the atmosphere is vanishing into frost

Neptune's moon Triton fosters rare icy union

Juno Finds Changes in Jupiter's Magnetic Field

Gas insulation could be protecting an ocean inside Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.