. 24/7 Space News .
WATER WORLD
A lightning-based approach to immediate short-duration rainfall predictions
by Staff Writers
Beijing, China (SPX) Feb 13, 2018

The models utilize low-grade warning signals to capture as many SDR events as possible, and take advantage of high-grade warning signals to improve the warning reliability. To verify the performance of the models, a total of 870 moderate and 452 intense SDR events over the BMR were selected. The results showed encouraging model performance.

Previous studies have indicated a worldwide increasing trend of intense precipitation events under the influence of global warming. Heavy precipitation events increase the risk of flooding, exerting devastating effects on human society and the environment, especially for metropolises with dense populations.

As one of the largest cities in the world, Beijing is highly vulnerable to increasingly frequent and intense precipitation events, such as the torrential rain event on 21 July 2012, when the city encountered its heaviest rainfall in the past few decades with a record-breaking amount of 460 mm in 18 hours.

Scientists have found that short-duration rainfall (SDR) events (a rainfall event of 6 hours or less in duration) dominate the total rainfall amount over Beijing in summer, and the rainfall amount of SDR events has increased significantly in recent decades. Thus, it is of great significance to provide accurate predictions of SDR events - something that remains a considerable challenge for scientists and forecasters.

Scientists have noticed and taken advantage of lightning to predict approaching rainstorms, but there are few potent prediction or warning methods available for the rainfall caused by such rainstorms - especially SDR events.

After studying the relationship between lightning and precipitation over Beijing during the warm seasons of 2006 and 2007, scientists from the Institute of Atmospheric Physics, Chinese Academy of Sciences (Fan Wu and Xiaopeng Cui) and their co-author (Da-lin Zhang, University of Maryland) developed a lightning-based nowcast-warning approach for SDR events, and then tested its performance over the Beijing Metropolitan Region (BMR). Their findings were recently published in Atmospheric Research.

The new approach uses sharp increasing rates of lightning flashes, termed lightning jumps, observed by lightning location systems, to provide early warnings for SDR events. Different from previous warning approaches for other severe types of weather caused by rainstorms (e.g., tornadoes, hail and wind gusts), in this approach, a rapid rise in the rainfall rate (referred to as a rainfall jump) in an SDR event is chosen as the warning target.

The nowcast-warning approach proposed in this study was designed for two types of SDR events - namely, those with moderate and intense rainfall rates.

To provide more accurate predictions of SDR events, the authors developed graded nowcast-warning models by changing the parameters in the lightning jump algorithm based on their new approach. These models can issue different signals based on the intensity of the lightning jump to improve the nowcast-warning performance.

The models utilize low-grade warning signals to capture as many SDR events as possible, and take advantage of high-grade warning signals to improve the warning reliability. To verify the performance of the models, a total of 870 moderate and 452 intense SDR events over the BMR were selected. The results showed encouraging model performance.

The warning models provided successful early warnings for 67.8% (87.0%) of the moderate (intense) SDR events, with false alarms of 27.0% (22.2%). In addition, the models provided a longer average warning time for the intense SDR events (52.0 minutes) than the moderate ones (36.7 minutes).

Finally, the authors further validated the models using three typical heavy-rain-producing storms that were independent from those used to develop the models. Results showed that the models present an encouraging warning capability for SDR events from regional to meso-? scales.

"Our approach provides a new perspective on predicting SDR events," says Prof. Xiaopeng Cui, the corresponding author of the study.

Research paper


Related Links
Institute of Atmospheric Physics, Chinese Academy of Sciences
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Aerial imagery gives insight into water trends
Logan UT (SPX) Feb 12, 2018
With an ever-growing human population and its inherent demand for water, there is a critical need to monitor water resources. New technology could make it more feasible than ever to measure changes in the water flow of rivers. Tyler King and Bethany Neilson, researchers at Utah State University, have developed a new method to estimate river discharge using aerial imagery gathered from helicopters and drones. Their new study, published Feb. 7 in Water Resources Research, found that aerial imaging c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Holograms and mermaids: Top trends at Nuremberg toy fair

Russia to start offering spacewalks for tourists

Cosmonauts position antennae wrong during record-long spacewalk

Celebrating 60 years of groundbreaking US space science

WATER WORLD
Soyuz launch to resupply ISS aborted seconds before liftoff

Elon Musk is launching a Tesla into space - here's how SpaceX will do it

SpaceX launches world's most powerful rocket toward Mars

SpaceX poised to launch 'world's most powerful rocket'

WATER WORLD
Studies of Clay Formation Provide Clues to Early Martian Climate

Opportunity Celebrates 14 Years of Working on Mars

Mount Sharp 'Photobombs' Mars Curiosity Rover

NASA tests power system to support manned missions to Mars

WATER WORLD
China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

Yang Liwei looks back at China's first manned space mission

WATER WORLD
2018 in Space - Progress and Promise

Brexit prompts EU to move satellite site to Spain

Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

WATER WORLD
Quantum cocktail provides insights on memory control

VR helps surgeons to 'see through' tissue and reconnect blood vessels

Latest Data From IMAGE Indicates Spacecraft's Power Functional

Virtual reality goes magnetic

WATER WORLD
Viruses are falling from the sky

What the TRAPPIST-1 Planets Could Look Like

Hubble offers first atmospheric data of exoplanets orbiting Trappist-1

TRAPPIST-1 Planets Probably Rich in Water

WATER WORLD
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.