. 24/7 Space News .
TIME AND SPACE
A gem of a lab will bring the world of quantum physics into the light
by Staff Writers
Plainsboro NJ (SPX) Sep 15, 2021

Co-doping diamond collaborators from left: Princeton Prof. Nathalie de Leon; David Graves, PPPL associate laboratory director for low temperature plasma surface interactions; Alastair Stacey of Australia's Royal Melbourne Institute of Technology, with ultraviolet image showing emission from diamond color centers behind them.

The novel design for a next-generation diamond sensor with capabilities that range from producing magnetic resonance imaging (MRI) of single molecules to detecting slight anomalies in the Earth's magnetic field to guide aircraft that lack access to global positioning systems (GPS) will be developed by a collaboration of scientists led by the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL).

Leading the collaboration to develop a new quantum sensor, under a highly competitive three-year, $5.2-million award from the DOE, is David Graves, PPPL associate laboratory director for low temperature plasma surface interactions, who will work closely with co-designers Nathalie de Leon of Princeton University, a renowned expert in quantum hardware, and physicist Alastair Stacey of Australia's Royal Melbourne Institute of Technology (RMIT).

"Technologies of tomorrow"
The award was one of 10 critically reviewed DOE microelectronic grants for national laboratories. "Microelectronics are the key to the technologies of tomorrow," said Secretary of Energy Jennifer M. Granholm, "and with DOE's world-class scientists leading the charge, they can help bring our clean energy future to life and put America a step ahead of our economic competitors."

The award brings PPPL, traditionally a fusion-focused research lab, fully into the often-bizarre world of quantum physics. "This is the start of a whole new activity for the laboratory that will make us leaders in the use of plasma to make diamond to improve sensors," said Steve Cowley, PPPL director. "It is also a marvelous example of how the laboratory, under David Graves's leadership, is collaborating with Princeton University and Professor Nathalie de Leon and physicist Alastair Stacey in Melbourne."

Creation of diamond sensors calls for the synthesis of designer diamond material that begins with a diamond seed that is built up through the gradual deposition of plasma-enhanced vapor. The trick is to replace carbon atoms of the growing material with nitrogen atoms and vacant spaces - a combination referred to as NV centers in diamonds. This combination creates the sensor and is commonly called a color center since it glows red when a light shines on it.

Tricky materials design
The tricky materials design requires the exquisitely careful doping, or implantation, of nitrogen atoms together with the creation of vacant spaces in the color center. The doping is done with microwave reactors that produce the plasma-enhanced vapors that enlarge the diamond. These reactors are in some ways similar to the microwave ovens used in homes but are modified to enable them to ignite plasmas. "Such reactors are very touchy and peculiar," Graves said. "You have to do the process just right to get the doping to work."=

The PPPL venture will follow the pathway suggested by Stacey of Australia's RMIT, who explained that increasing the number of color centers addressed at a time will make the sensor more sensitive. However, he said, the traditional method of doing this by increasing the density of the centers creates defects in the diamond that degrade the color center properties and thus limit the sensor improvement. To avoid that problem, he proposed adding the innovative step of co-doping the diamond with phosphorus plasma to increase the density without electrical interference.

The plasma must be carefully controlled to successfully incorporate both dopants and that requires significant advances in plasma physics and chemistry. Key plasma researchers include PPPL physicists Yevgeny Raitses and Igor Kaganovich, leaders of PPPL's Laboratory for Plasma Nanosynthesis, who will examine plasma used in the synthesis of diamond sensors. Plasma, the fourth state of matter that makes up 99 percent of the visible universe, consists of free electrons and atomic nuclei, or ions.

Room-temperature plasmas
Kaganovich and his team will model the room-temperature plasmas and perform quantum-chemistry calculations of diamond growth, while Raitses will use state-of-the-art diagnostics to measure the chemical species, or substances, in the plasma. The plasma studies will help guide the choice of synthesis conditions. The low-temperature, or cold, plasmas studied compare with the million-degree fusion plasmas that have been the hallmark of PPPL research.

"The basic idea is to combine plasma science with modeling the surface chemistry of the plasma and doing experiments to grow the diamond," Graves said. "We also want to understand the science behind how you build and operate a plasma reactor to give you this highly specialized and defect-free material for useful quantum sensors."

The plan calls for buying two commercial reactors to co-dope the diamond at PPPL: one for light phosphorous doping and one for heavy phosphorous doping. The combination will enable a range of doping concentrations, Graves said.

The development process will bring all collaborators together. The group headed by Princeton's de Leon will lead measurements that include what are called the coherence properties of the diamond's color centers. Such properties refer to the length of time that electrons in the color center spin in quantum superposition, or simultaneously up and down, to activate the sensor.

"Tight collaboration"
"Having a tight collaboration between diamond synthesis, plasma modeling, and quantum measurement will enable a new frontier in quantum sensors," de Leon said. "These research areas are typically completely separate research communities, and I am excited about what we can achieve together."

Meanwhile, Stacey will lead measurements of the doping characteristics and growth of the diamond crystal, beginning with the seed. "The seed is a piece of existing high-purity single= crystal diamond," Stacey said. "We often only add a tiny bit of new diamond, just as a new layer on the surface, but this new layer has precisely engineered properties [such as doping agents and increased densities] which the original seed did not have."

Graves notes the significance of the project for PPPL. "This is a big step," he said. "It's our first competitive [quantum] proposal. It's a pretty big deal for PPPL to get a grant in an area like this that is so different from our traditional research, and I think symbolically it's important."


Related Links
Princeton Plasma Physics Laboratory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Groundbreaking technique yields important new details on possible 'fifth force'
Waterloo, Canada (SPX) Sep 10, 2021
A group of researchers have used a groundbreaking new technique to reveal previously unrecognized properties of technologically crucial silicon crystals and uncovered new information about an important subatomic particle and a long-theorized fifth force of nature. The research was an international collaboration conducted at the National Institute of Standards and Technology (NIST). Dmitry Pushin, a member of the University of Waterloo's Institute for Quantum Computing and a faculty member in Water ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
German ESA astronaut Matthias Maurer is ready for his first ISS mission - 'Cosmic Kiss'

Russian Gov't allocates $60Mln to build Soyuz for tourist flights

Dates set for Space Station change of command as Franco-German relations awarded Media prize

Simultaneous presence in space surges to historic maximum of 14 people

TIME AND SPACE
SKorea plans to launch solid-propellant space launch vehicle in 2024, Defence Ministry says

ABL Space selected for NASA Cryogenic Demonstration Mission

NASA awards launch services contract for GOES-U Mission

SpaceX Inspiration4 mission sent 4 people with minimal training into orbit

TIME AND SPACE
Justin Simon Shepherds Perseverance through first phase of Martian rock sampling

Take a 3D Spin on Mars and track NASA's Perseverance Rover

NASA confirms thousands of massive, ancient volcanic eruptions on Mars

NASA's Perseverance rover collects puzzle pieces of Mars' history

TIME AND SPACE
Chinese astronauts return to Earth after 90-day mission

China prepares to launch Tianzhou-3 cargo spacecraft

Chinese astronauts return to earth after 90-day mission

Chinese astronauts complete three-month space mission

TIME AND SPACE
Russian Soyuz rocket launches 34 new UK satellites

India to revise FDI policy for space sector, says ISRO chief Sivan

Adaptable optical communications to facilitate future low-earth orbit networks

SpaceX launches Starlink satellites into orbit from West Coast

TIME AND SPACE
China brings astronauts back, advances closer to "space station era"

European facility prepares for haul of samples returning from planetary bodies

Ballistic air guns and mock moon rocks aid in search for durable space fabrics

NASA provides laser for LISA mission

TIME AND SPACE
Observations in stellar factory indicates start of planet production

How planets may be seeded with the chemicals necessary for life

Planets form in organic soups with different ingredients

Earthlike planets in other solar systems? Look for moons

TIME AND SPACE
Mushballs stash away missing ammonia at Uranus and Neptune

A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.