. | . |
A cross-center collaboration leads to an aerogel based aircraft antenna by Elvia Valenzuela for Armstrong News Edwards AFB CA (SPX) Nov 06, 2019
NASA's four aeronautics research centers collaborated to create a new lightweight antenna to boost aircraft and antenna performance. This unique conformal antenna is designed to minimize drag to gain efficiency compared to a conventional satellite dish. Current satellite dishes are heavy and bulky and require a gimbal to maneuver and point at different satellites for communications. This multicenter effort used aerogels to develop the conformal antenna under the Conformal Lightweight Antenna Structures for Aeronautical Communications Technologies (CLAS-ACT) activity within the Convergent Aeronautics Solutions project. NASA's Ames Research Center and Armstrong Flight Research Centers in California, Glenn Research Center in Ohio and Langley Research Center in Virginia are the agency's aeronautics centers. The CLAS-ACT team set out on a mission to design a lightweight antenna using aerogels that consist of 90% air. Aerogels are very lightweight compared to conventional antenna materials, which can result in a thin, flexible antenna with improved gain, bandwidth and efficiency. The conformal antenna is made of 64 small antennas that combine to perform the function of one large antenna. The antenna can also maneuver the signal, minimizing interference with ground users in ways not possible with a traditional antenna. The antenna is designed with a new commercial phased array chipset to enable a small size, low-weight and power solution for beyond line-of-sight communications on small to medium scale unmanned aircraft systems (UAS). The phased array chipset reduces radio interference to ground stations to address interference concerns from UAS being integrated into the national airspace. The phased array demonstrated the ability to lower side lobes, or unintentional radiation from the antenna, as the conformal antenna delivers its signal to its intended target. The project team performed flight tests with the antenna installed on the luggage door of a T-34C aircraft. A newly developed robotic antenna scanner allowed for extended preflight testing and verification. Both tests measured the antenna's pattern characteristics to determine the feasibility of the interference mitigation techniques. The team completed five flight tests including four antenna configurations within a variety of flight altitudes and demonstrated a reduction of side lobes. The antenna was designed and tested in the anechoic chamber at Glenn, the on-aircraft modeling of the antenna's performance happened at Langley Research, the preflight planning was accomplished at Ames Research and the integration and flight tests occurred at Armstrong. The CLAS-ACT team has documented its research outcomes and lessons learn to support aeronautics as more companies introduce their UAS. The cross-center collaboration will continue as the team determines its next steps.
Rethinking the science of plastic recycling Lemont IL (SPX) Oct 25, 2019 New catalytic method could mitigate global plastic pollution. We depend on plastics in our daily life - not just for conveniences like plastic bags and bottles, but also for essential applications like food packaging and medical devices where plastic is simply the best material available. To meet the ever-rising demand, manufacturers now produce nearly 400 million tons of plastic every year worldwide, and that number could jump fourfold by 2050. Yet, today, we throw away over three-quarters of our ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |