24/7 Space News
TECH SPACE
A computer scientist pushes the boundaries of geometry
MIT Professor Justin Solomon applies modern geometric techniques to solve difficult problems in a variety of areas, such as developing machine learning models that perform more accurately on target datasets and helping autonomous vehicles identify pedestrians. Credits:Photo: Adam Glanzman
A computer scientist pushes the boundaries of geometry
by Adam Zewe | MIT News
Boston MA (SPX) Dec 18, 2023

More than 2,000 years ago, the Greek mathematician Euclid, known to many as the father of geometry, changed the way we think about shapes.

Building off those ancient foundations and millennia of mathematical progress since, Justin Solomon is using modern geometric techniques to solve thorny problems that often seem to have nothing to do with shapes.

For instance, perhaps a statistician wants to compare two datasets to see how using one for training and the other for testing might impact the performance of a machine-learning model.

The contents of these datasets might share some geometric structure depending on how the data are arranged in high-dimensional space, explains Solomon, an associate professor in the MIT Department of Electrical Engineering and Computer Science (EECS) and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL). Comparing them using geometric tools can bring insight, for example, into whether the same model will work on both datasets.

"The language we use to talk about data often involves distances, similarities, curvature, and shape - exactly the kinds of things that we've been talking about in geometry forever. So, geometers have a lot to contribute to abstract problems in data science," he says.

The sheer breadth of problems one can solve using geometric techniques is the reason Solomon gave his Geometric Data Processing Group a "purposefully ambiguous" name.

About half of his team works on problems that involve processing two- and three-dimensional geometric data, like aligning 3D organ scans in medical imaging or enabling autonomous vehicles to identify pedestrians in spatial data gathered by LiDAR sensors.

The rest conduct high-dimensional statistical research using geometric tools, such as to construct better generative AI models. For example, these models learn to create new images by sampling from certain parts of a dataset filled with example images. Mapping that space of images is, at its core, a geometric problem.

"The algorithms we developed targeting applications in computer animation are almost directly relevant to generative AI and probability tasks that are popular today," Solomon adds.

Getting into graphics
An early interest in computer graphics started Solomon on his journey to become an MIT professor.

As a math-minded high school student growing up in northern Virginia, he had the opportunity to intern at a research lab outside Washington, where he helped to develop algorithms for 3D face recognition.

That experience inspired him to double-major in math and computer science at Stanford University, and he arrived on campus keen to dive into more research projects. He remembers charging into the campus career fair as a first-year and talking his way into a summer internship at Pixar Animation Studios.

"They finally relented and granted me an interview," he recalls.

He worked at Pixar every summer throughout college and into graduate school. There, he focused on physical simulation of cloth and fluids to improve the realism of animated films, as well as rendering techniques to change the "look" of animated content.

"Graphics is so much fun. It is driven by visual content, but beyond that, it presents unique mathematical challenges that set it apart from other parts of computer science," Solomon says.

After deciding to launch an academic career, Solomon stayed at Stanford to earn a computer science PhD. As a graduate student, he eventually focused on a problem known as optimal transport, where one seeks to move a distribution of some item to another distribution as efficiently as possible.

For instance, perhaps someone wants to find the cheapest way to ship bags of flour from a collection of manufacturers to a collection of bakeries spread across a city. The farther one ships the flour, the more expensive it is; optimal transport seeks the minimum cost for shipment.

"My focus was originally narrowed to only computer graphics applications of optimal transport, but the research took off in other directions and applications, which was a surprise to me. But, in a way, this coincidence led to the structure of my research group at MIT," he says.

Solomon says he was attracted to MIT because of the opportunity to work with brilliant students, postdocs, and colleagues on complex, yet practical problems that could have an impact on many disciplines.

Paying it forward
As a faculty member, he is passionate about using his position at MIT to make the field of geometric research accessible to people who aren't usually exposed to it - especially underserved students who often don't have the opportunity to conduct research in high school or college.

To that end, Solomon launched the Summer Geometry Initiative, a six-week paid research program for undergraduates, mostly drawn from underrepresented backgrounds. The program, which provides a hands-on introduction to geometry research, completed its third summer in 2023.

"There aren't many institutions that have someone who works in my field, which can lead to imbalances. It means the typical PhD applicant comes from a restricted set of schools. I'm trying to change that, and to make sure folks who are absolutely brilliant but didn't have the advantage of being born in the right place still have the opportunity to work in our area," he says.

The program has gotten real results. Since its launch, Solomon has seen the composition of the incoming classes of PhD students change, not just at MIT, but at other institutions, as well.

Beyond computer graphics, there is a growing list of problems in machine learning and statistics that can be tackled using geometric techniques, which underscores the need for a more diverse field of researchers who bring new ideas and perspectives, he says.

For his part, Solomon is looking forward to applying tools from geometry to improve unsupervised machine learning models. In unsupervised machine learning, models must learn to recognize patterns without having labeled training data.

The vast majority of 3D data are not labeled, and paying humans to hand-label objects in 3D scenes is often prohibitively expensive. But sophisticated models incorporating geometric insight and inference from data can help computers figure out complex, unlabeled 3D scenes, so models can learn from them more effectively.

When Solomon isn't pondering this and other knotty research quandaries, he can often be found playing classical music on the piano or cello. He's a fan of composer Dmitri Shostakovich.

An avid musician, he's made a habit of joining a symphony in whatever city he moves to, and currently plays cello with the New Philharmonia Orchestra in Newton, Massachusetts.

In a way, it's a harmonious combination of his interests.

"Music is analytical in nature, and I have the advantage of being in a research field - computer graphics - that is very closely connected to artistic practice. So the two are mutually beneficial," he says.

Related Links
Computer Science and Artificial Intelligence Laboratory
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Closing the design-to-manufacturing gap for optical devices
Boston MA (SPX) Dec 14, 2023
Photolithography involves manipulating light to precisely etch features onto a surface, and is commonly used to fabricate computer chips and optical devices like lenses. But tiny deviations during the manufacturing process often cause these devices to fall short of their designers' intentions. To help close this design-to-manufacturing gap, researchers from MIT and the Chinese University of Hong Kong used machine learning to build a digital simulator that mimics a specific photolithography manufac ... read more

ADVERTISEMENT
ADVERTISEMENT
TECH SPACE
NASA Outlines Future Strategy for Post-ISS Microgravity Research Labs in LEO

Jeff Bezos's Blue Origin headed back into space after accident

NASA: Let's Ketchup on International Space Station Tomato Research

NASA's Commercial Partners Continue Progress on New Space Stations

TECH SPACE
Virgin Galactic sets January 2024 for 11th mission

NASA's 3D-printed Rotating Detonation Rocket Engine Test a Success

Sierra Space's Dream Chaser New Station Resupply Spacecraft for NASA

Blue Origin scrubs return of New Shepard rocket flight due to technical issue

TECH SPACE
Recent volcanism on Mars reveals a planet more active than previously thought

Sussex research takes us a step closer to sustaining human life on Mars

A Soliday Before the Holidays Sols 4039-4040

Rocker-Bogie Around the Marsmas Sea: Sols 4041-4042

TECH SPACE
China's space programme: Five things to know

Shenzhou XVII astronauts set for their first spacewalk

China's commercial space sector achieves milestones with series of successful launches

Long March rockets mark their 500th spaceflight

TECH SPACE
Bayanat and Yahsat to Merge, Forming AI-Driven Space Technology Powerhouse, Space42

NASA Enhances Aerospace Innovation with New SBIR Ignite Phase I Awards

NASA and Blue Origin partner to propel space technology in latest suborbital flight

Satellite Communications Innovator Lynk Global to Go Public via Slam Corp. Merger

TECH SPACE
A computer scientist pushes the boundaries of geometry

The feline frontier: NASA sends cat video from deep space

Sidus Space's LizzieSat gears up for launch with successful test

Scientists 3D print self-heating microfluidic devices

TECH SPACE
Astrophysicists publish Kepler Giant Planet Search, an aid to 'figure out where to find life'

Earth may have had all the elements needed for life within it all along

NEOWISE space telescope marks 10 Years on orbit as End of Mission looms

NASA Study Finds Life-Sparking Energy Source and Molecule at Enceladus

TECH SPACE
The PI's Perspective: The Long Game

Webb rings in the holidays with the ringed planet Uranus

Unwrapping Uranus and its icy moon secrets

Juice burns hard towards first-ever Earth-Moon flyby

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.