. 24/7 Space News .
EXO WORLDS
A chemical clue to how life started on Earth
by Staff Writers
La Jolla CA (SPX) Aug 02, 2019

illustration only

Earth didn't always harbor life. But around 4 billion years ago, something in the environment changed, and systems with biological properties began to emerge. Many scientists believe a lively dance of molecules called amino acids is partly responsible for the shift: Molecules linked up, broke apart and eventually came together to form life as we know it.

We might never know exactly how the process worked, but chemists today have made new discoveries that build upon promising theories for how life formed.

"How chemistry led to complex life is one of the most fascinating questions that mankind has pondered," says Luke Leman, PhD, assistant professor of chemistry at Scripps Research. "There are a lot of theories about the origins of proteins but not so much experimental laboratory support for these ideas."

Leman recently co-led a study into the very recipe for life on early Earth; the research is published in the Proceedings of the National Academy of Sciences. He worked closely with researchers at the Georgia Institute of Technology and the Center for Chemical Evolution, which is supported by the National Science Foundation and NASA.

"The research helps us understand how positively charged peptides could have formed on the pre-biotic earth," says Moran Frenkel-Pinter, PhD, a postdoctoral fellow at Georgia Tech and first author of the paper. Peptides are made when two or more amino acid building blocks link up, leading to the proteins that make up every organism.

Leman, Frenkel-Pinter and many other scientists in this field find it strange that every living thing on our planet forms its proteins from the exact same set of 20 amino acids. Why that specific set? Scientists know there are many more amino acids out there. In fact, meteorites with up to 80 amino acids have landed on Earth.

"In the prebiotic Earth, there would have been a much larger set of amino acids," says Leman, who also is scientific collaborator at the Center for Chemical Evolution. "Is there something special about these 20 amino acids, or did these just get frozen at a moment in time by evolution?"

The new study suggests that life's dependence on these 20 amino acids is no accident. The researchers show that the kinds of amino acids used in proteins are more likely to link up together because they react together more efficiently and have few inefficient side reactions.

This finding gives researchers a look back in time and a working model for testing further theories for the origins of life. Understanding how peptides form is also important for the field of synthetic chemistry, where scientists are striving to design new molecules that can be used for drug therapies and material science.

"This work is a real step toward understanding why certain building blocks are found in the proteins essential for life," says Kathy Covert, program director at the National Science Foundation's Centers for Chemical Innovation, which co-funds the Center for Chemical Evolution.

"Through research like this, the Center is realizing its ambitious mission to shed light on the chemistries of biopolymers, a foundation of all living things."

For the experiment, the researchers compared "proteinaceous" amino acids - those used by organisms today - to amino acids that are not present in living things. The researchers knew water evaporation could have created the conditions necessary for amino acids to link together on early Earth, so they used a drying reaction - water evaporates and heat is applied - to mimic the natural conditions that cause amino acids to form peptides.

"With heating and drying cycles, you can form chains of amino acids that are similar to protein structures," Leman says.

Their experiments showed that proteinaceous amino acids are more likely to spontaneously link to form large "macromolecules" without requiring any other ingredients, such as enzymes or activating agents. This linkage is an important step in forming a protein.

The proteinaceous amino acids seemed to prefer reactivity through a part of their structure called the alpha-amine. They mostly formed linear, protein-like backbone "topologies" (geometric formations). This tendency could have given these amino acids a head start in folding and binding, leading eventually to proteins.

Based on the chemistry they observed, the scientists now have a possible explanation for the selection of the positively charged amino acids found in today's proteins.

"This is a purely chemical driving force that could have led to the selection of certain amino acids over other ones," says Leman.

Loren Williams, PhD, professor at Georgia Tech and co-leader of the study, says the research gives chemists a starting point for understanding how life could have started on early Earth, also called the Hadean Earth. "We are starting to understand how purely chemical processes, based on those of the Hadean Earth, can produce molecules that have surprising similarities to biological polymers," says Williams, who is also a member of the CCE.

Going forward, the researchers would like to investigate how these amino acids interact with RNA, the ingredient on early that may have made the next step in evolution possible.

"It will be interesting to learn how these positively charged ancestors of proteins cooperate with negatively-charged molecules such as RNA," says Frenkel-Pinter.

Research Report: "Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions"


Related Links
Scripps Research Institute
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Microbiologists uncover mechanisms of magnetic bacteria
Washington (UPI) Jul 31, 2019
New research has revealed the mechanics of a magnetic bacteria named Magnetospirillum gryphiswaldense. The unique species synchronizes its locomotion with the Earth's magnetic field using a chain of spiral-shaped magnetic crystals called magnetosomes. According to a new study conducted by researchers in Germany, published this week in the journal Nature Microbiology, the formation of the magnetic chain is controlled by a protein named MamY. Dozens of animals use Earth's magnetic f ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Flight by Light: Mission accomplished for LightSail 2

Japan's space agency develops new filter to recycle urine

NASA commercial lunar payload services update

US spacecraft's solar sail successfully deploys

EXO WORLDS
China successfully tests accurate landing of rocket debris

First rollout of Ariane 6 mobile gantry

3D printed rocket fuel comparison at James Cook University

Japan's MOMO-F4 private rocket falls into ocean minutes after takeoff

EXO WORLDS
World first as kits designed to extract metals from the Moon and Mars blast off for space station tests

Mars 2020 rover does biceps curls

Europe prepares for Mars courier

Fueling of NASA's Mars 2020 rover power system begins

EXO WORLDS
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

EXO WORLDS
Communications satellite firm OneWeb plans to start monthly launches in December

OneWeb and Airbus start up world's first high-volume satellite production facility in Florida

Why isn't Australia in deep space?

Maintaining large-scale satellite constellations using logistics approach

EXO WORLDS
Camera can watch moving objects around corners

AFRL looks to fine tune process of 3D printing composite inks

Lockheed contracted by Northrop Grumman for E-2D Hawkeye radars

Finding alternatives to diamonds for drilling

EXO WORLDS
Pre-life building blocks spontaneously align in evolutionary experiment

Microbiologists uncover mechanisms of magnetic bacteria

New method for exoplanet stability analysis

TESS finds 'missing link' planets

EXO WORLDS
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.