. 24/7 Space News .
Microbiologists uncover mechanisms of magnetic bacteria
by Brooks Hays
Washington (UPI) Jul 31, 2019

New research has revealed the mechanics of a magnetic bacteria named Magnetospirillum gryphiswaldense.

The unique species synchronizes its locomotion with the Earth's magnetic field using a chain of spiral-shaped magnetic crystals called magnetosomes.

According to a new study conducted by researchers in Germany, published this week in the journal Nature Microbiology, the formation of the magnetic chain is controlled by a protein named MamY.

Dozens of animals use Earth's magnetic field for navigational purposes, but scientists still don't understand exactly how this unique sensory ability works. Now, researchers have at least partially explained the mechanics of magnetic navigation in a unicellular bacteria species.

Inside Magnetospirillum gryphiswaldense, dozens of magnetic crystals are attached to a thread-like structure, which prevents them from clumping together, pulled together by their magnetism. Forced to remain in a straight line, the chain aligns with the lines of Earth's magnetic field.

Like a compass needle, the phenomenon helps the bacteria travel in a straight line, allowing it to reach its preferred habitat, water-logged sediments, more quickly.

What scientists hadn't been able to figure out is why the chain evolved to form a straight line while the bacteria's cell shape assumed a spiral-like shape.

Using super-resolution microscopy, cryo-electron tomography and several other advanced imaging techniques, they found that the structural protein MamY ensures the chain maintains a straight line. The protein also positions the chain so that it can best accommodate the bacteria's swimming locomotion.

When scientists blocked the production of MamY in Magnetospirillum gryphiswaldense, each cell's magnetite crystals formed a chain but failed to maintain a straight line. The compass needle wobbled as the cells swam, reducing the efficiency of their movements.

"All these observations confirm the conclusion: MamY is the key protein that arranges the magnetosome chain in the cell in such a way that the function of a compass needle is perfectly fulfilled," lead study author Frank Müller, microbiologist at the University of Bayreut, said in a news release. "The protein enables the bacteria to navigate optimally."

Researchers determined that MamY also helps anchor the compass-like chain to the most curved portion of the cell wall, ensuring the cell's locomotion is as uninhibited and as efficient as possible.

Related Links
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

ELSI scientists discover new chemistry that may help explain the origins of cellular life
Tokyo, Japan (SPX) Jul 24, 2019
Before life began on Earth, the environment likely contained a massive number of chemicals that reacted with each other more or less randomly, and it is unclear how things as complex as cells could have emerged from such chemical chaos. Now, a team led by Tony Z. Jia of the Earth-Life Science Institute (ELSI) at the Tokyo Institute of Technology and Kuhan Chandru of the National University of Malaysia, has shown that simple a-hydroxy acids, like glycolic and lactic acid (which is used in common store-bo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

US spacecraft's solar sail successfully deploys

Indigenous Congo foragers learn early to use sun for orientation

French inventor to hover across English Channel on 'flyboard'

Japan's Noguchi to Be 1st Foreign Astronaut to Join New US Spacecraft Crew for ISS Mission

3D printing transforms rocketry in Florida

SpaceX cargo launch to space station now targeting Wednesday

Apollo's legacy: A quiet corner of Alabama that is forever Germany

India to make new bid to launch Moon rocket on Monday

Europe prepares for Mars courier

Fueling of NASA's Mars 2020 rover power system begins

ExoMars radio science instrument readied for Red Planet

Mars 2020 Rover: T-Minus One Year and Counting

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

China plans to deploy almost 200 AU-controlled satellites into orbit

Communications satellite firm OneWeb plans to start monthly launches in December

OneWeb and Airbus start up world's first high-volume satellite production facility in Florida

Why isn't Australia in deep space?

Maintaining large-scale satellite constellations using logistics approach

Lockheed contracted by Northrop Grumman for E-2D Hawkeye radars

Finding alternatives to diamonds for drilling

Electronic chip mimics the brain to make memories in a flash

First of Two Van Allen Probes Spacecraft Ceases Operations

ELSI scientists discover new chemistry that may help explain the origins of cellular life

Scientists deepen understanding of magnetic fields surrounding Earth and other planets

Super salty, subzero Arctic water provides peek at possible life on other planets

Astronomers expand cosmic "cheat sheet" in hunt for life

Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.