. 24/7 Space News .
EXO WORLDS
Winds of rubies and sapphires strike the sky of giant planet
by Staff Writers
Warwick, UK (SPX) Dec 13, 2016


This is an artist's impression of planet HAT-P-7b. Image courtesy University of Warwick/Mark Garlick. For a larger version of this image please go here.

Signs of powerful changing winds have been detected on a planet 16 times larger than Earth, over 1000 light years away - the first time ever that weather systems have been found on a gas giant outside our solar system - according to new research by the University of Warwick.

Dr David Armstrong in Warwick's Astrophysics Group has discovered that the gas giant HAT-P-7b is affected by large scale changes in the strong winds moving across the planet, likely leading to catastrophic storms. This discovery was made by monitoring the light being reflected from the atmosphere of HAT-P-7b, and identifying changes in this light, showing that the brightest point of the planet shifts its position.

This shift is caused by an equatorial jet with dramatically variable wind-speeds - at their fastest, pushing vast amounts of cloud across the planet. The clouds themselves would be visually stunning - likely made of up corundum, the mineral which forms rubies and sapphires.

The planet could never be inhabitable, due to its likely violent weather systems, and unaccommodating temperatures. One side of the planet always faces the star, because it is tidally locked, and that side remains much hotter than the other - the day side average temperature on HAT-P-7 being 2860K.

Thanks to this pioneering research, astrophysicists can now begin to explore how weather systems on other planets outside our solar system change over time.

Dr Armstrong comments on the discovery: "Using the NASA Kepler satellite we were able to study light reflected from HAT-P-7b's atmosphere, finding that the atmosphere was changing over time. HAT-P-7b is a tidally locked planet, with the same side always facing its star. We expect clouds to form on the cold night side of the planet, but they would evaporate quickly on the hot dayside.

"These results show that strong winds circle the planet, transporting clouds from the night side to the dayside. The winds change speed dramatically, leading to huge cloud formations building up then dying away. This is the first detection of weather on a gas giant planet outside the solar system."

First discovered in 2008, HAT-P-7b is 320 parsecs (over 1040 light years) away from us. It is an exoplanet 40% larger than Jupiter and 500 times more massive than the Earth - and orbits a star 50% more massive, and twice as large, as the Sun.

The paper, 'Variability in the Atmosphere of the Hot Jupiter HAT-P-7', is published in the first issue of Nature Astronomy.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Warwick
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO WORLDS
ALMA measures size of seeds of planets
Tokyo, Japan (SPX) Dec 06, 2016
Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA), have for the first time, achieved a precise size measurement of small dust particles around a young star through radio-wave polarization. ALMA's high sensitivity for detecting polarized radio waves made possible this important step in tracing the formation of planets around young stars. Astronomers have believed tha ... read more


EXO WORLDS
Space Network upgrade to double data rates on ISS

NASA Tech - it's all around us

NASA Communications Network to Double Space Station Data Rates

NASA's Exo-Brake 'Parachute' to Enable Safe Return for Small Spacecraft

EXO WORLDS
Technical glitch postpones NASA satellite launch

After glitch, NASA satellite launch set for Wednesday

NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

China develops non-toxic propellant for orbiting satellites

EXO WORLDS
Mars Rock-Ingredient Stew Seen as Plus for Habitability

First detection of boron on the surface of Mars

ExoMars orbiter images Phobos

Mars One puts back planned colonisation of Red Planet

EXO WORLDS
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

EXO WORLDS
Telecom satellite system to encircle globe

UAE launches national space policy

Air New Zealand signs contract for Inmarsat's GX Aviation

European ministers ready ESA for a United Space in Europe in the era of Space 4.0

EXO WORLDS
Deep-frozen helium molecules

This is 'year zero' of a virtual reality revolution say filmmakers

Velodyne LiDAR makes breakthrough for tiny, low cost solid-state LiDAR sensors

Supercomputer simulation reveals 2-D glass can go infinitely soft

EXO WORLDS
Who needs a body? Not these larvae, which are basically swimming heads

Atlas of the RNA universe takes shape

Rings around young star suggest planet formation in progress

ALMA finds compelling evidence for pair of infant planets around young star

EXO WORLDS
Research Offers Clues About the Timing of Jupiter's Formation

Juno Mission Prepares for December 11 Jupiter Flyby

New Perspective on How Pluto's "Icy Heart" Came to Be

New analysis adds to support for a subsurface ocean on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.