. | . |
NASA's Exo-Brake 'Parachute' to Enable Safe Return for Small Spacecraft by Kimberly Williams for Ames News Moffett Field CA (SPX) Dec 14, 2016
NASA's "Exo-Brake" will demonstrate a critical technology leading to the potential return of science payloads to Earth from the International Space Station through the deployment of small spacecraft in early 2017. An Exo-Brake is a tension-based, flexible braking device resembling a cross-parachute that deploys from the rear of a satellite to increase the drag. It is a de-orbit device that replaces the more complicated rocket-based systems that would normally be employed during the de-orbit phase of re-entry. "The Exo-Brake's current design uses a hybrid system of mechanical struts and flexible cord with a control system that 'warps' the Exo-Brake - much like how the Wright brothers used warping to control the flight behavior of their first wing design," said Marcus Murbach, principal investigator and inventor of the Exobrake device. This warping, combined with real-time simulations of the orbital trajectory, allows engineers to guide the spacecraft to a desired entry point without the use of fuel, enabling accurate landing for future payload return missions. Engineers at NASA's Ames Research Center in California's Silicon Valley, have been testing the Exo-Brake technology as a simple design that promises to help bring small payloads back through Earth's atmosphere unharmed. The technology demonstration mission is a part of the Technology Education (TechEdSat-5) nanosatellite that was launched Dec. 9 on Japan's H-II Transfer Vehicle from Tanegashima Space Center in Japan. The Exo-Brake will reside on the space station until its deployment in early 2017. Since 2012, the Exo-Brake has been tested on balloons and sub-orbital rockets through the Sub-Orbital Aerodynamic Re-entry Experiments, or SOAREX, flight series. Earlier versions of the Exo-Brake and other critical systems also have been tested on orbital experiments on TechEdSat nano-satellite missions. Two additional technologies will be demonstrated on TechEdSat-5. These include the 'Cricket' Wireless Sensor Module (WSM), which provides a unique wireless network for multiple wireless sensors, providing real time data for TechEdSat-5. TechEdSat-5's nanosatellite bus element will also utilize the PhoneSat-5 avionics board that uses, for the first time, the versatile Intel Edison microprocessor. The new board is designed to test TechEdSat-5's unique Wi-Fi capabilities, high fidelity cameras, and contains Iridium L-band transceiver for data. In addition to the goal of returning samples from the space station, the project seeks to develop "building blocks" for larger scale systems that might enable future small or nanosatellite missions to reach the surface of Mars and other planetary bodies in the solar system. The Exo-Brake is funded by the Entry Systems Modeling project within the Space Technology Mission Directorate's Game Changing Development program. Additional funding for the Exo-Brake is provided by NASA Ames Research Center and the NASA Engineering and Safety Center. The TechEdSat series of nanosatellites is a STEM collaborative activity that involves NASA early-career employees, interns and students from several universities including San Jose State University, University of Idaho, University of California at Riverside, and California Polytechnic San Luis Obispo.
Related Links Small Satellite at NASA Space Tourism, Space Transport and Space Exploration News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |