. 24/7 Space News .
TIME AND SPACE
Wave-particle interactions allow collision-free energy transfer in space plasma
by Staff Writers
Nagoya, Japan (SPX) Sep 20, 2018

Electromagnetic ion cyclotron waves are generated by the instability of hydrogen ions and cause nearby helium ions to accelerate.

The Earth's magnetosphere contains plasma, an ionized gas composed of positive ions and negative electrons. The motion of these charged plasma particles is controlled by electromagnetic fields. The energy transfer processes that occur in this collisionless space plasma are believed to be based on wave-particle interactions such as particle acceleration by plasma waves and spontaneous wave generation, which enable energy and momentum transfer.

However, while the coexistence of waves with accelerated particles in the magnetosphere has been studied for many years, the gradual nature of the interactions between them has made observation of these processes difficult. Detection of local energy transfer between the particles and the fields is therefore required to enable quantitative assessment of their interactions.

Researchers from Nagoya University's Institute for Space-Earth Environmental Research (ISEE) are part of a research team that have performed ultrafast measurements using four Magnetospheric Multiscale (MMS) spacecraft to evaluate the energy transfer that occurred during interactions associated with electromagnetic ion cyclotron waves.

"We observed that the ion distributions were not symmetrical around the magnetic field direction but were in fact in phase with the plasma wave fields," states Nagoya University's Masafumi Shoji.

The high-time-resolution measurements provided by the MMS spacecraft were combined with composition-resolved ion measurements to demonstrate the simultaneous occurrence of two energy transfers.

The first energy transfer was from hot anisotropic hydrogen ions to an ion cyclotron wave via a cyclotron resonance process, while the second transfer was from the cyclotron wave to helium ions, which took place via a nonresonant interaction and saw the cold He+ ions being accelerated to energies of up to 2 keV.

"This represents direct quantitative evidence of the occurrence of collisionless energy transfer between two distinct particle populations via wave-particle interactions," says Yoshizumi Miyoshi from Nagoya University's ISEE.

"Measurements of this type will even provide the capability to identify the types of wave-particle interactions that are occurring." The team's findings were recently published in Science.

It is hoped that this research represents a major step towards a quantitative understanding of the wave-particle interactions and energy transfer between particle populations in space plasma.

This would have implications for our understanding of a wide variety of space plasma phenomena, including the Van Allen radiation belt, geomagnetic storms, auroral particle precipitation, and atmospheric loss from planets, such as the loss of oxygen ions from Earth's atmosphere.

Research Report: "Direct measurements of two-way wave-particle energy transfer in a collisionless space plasma"


Related Links
Nagoya University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Russian and German physicists developed a mathematical model of trapped atoms and ions
Moscow, Russia (SPX) Sep 19, 2018
It is difficult to study processes at the level of individual atoms and ions at room temperature due to their thermal motion. It causes disturbance that is the reason for considerable inaccuracy of measurements. The main cause of observation errors is the Doppler effect. However, if the atoms are cooled down and therefore the speed of their thermal motion is reduced, this effect can be suppressed. Atoms can be cooled down using a laser, but it's important to select proper frequency and direction. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Orion's first Service Module integration complete

NASA Will Pay Anyone $15,700 to Stay in Bed for 70 Days

Yusaku Maezawa: Japanese spaceman with a taste for art

Fly me to the Moon? A look at the space-tourism race

TIME AND SPACE
Japanese billionaire businessman revealed as SpaceX's first Moon traveler

Baikonur Facilities to Undergo Overhaul Before OneWeb Satellites Launch - Source

100th Ariane 5 will carry Horizons 3e and Azerspace-2 Intelsat 38

SSTL confirms the successful launch of NovaSAR-1 and SSTL S1-4 satellites

TIME AND SPACE
ExoMars orbiter highlights radiation risk for Mars astronauts

Attempting Contact With Opportunity Multiple Times A Day

River basin provides evidence of ancient ocean on Mars

Curiosity Surveys a Mystery Under Dusty Skies

TIME AND SPACE
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

TIME AND SPACE
GMV primes the biggest contract ever signed by Spain's space industry

Creating Dynamism in Indian Space Ecosystem

Making space exploration real on Earth

Telesat advanced satellite begins on-orbit operations reports SSL

TIME AND SPACE
Scientists develop new way to prevent spacecraft errors

DigitalGlobe and LeoLabs working to promote safe, responsible spaceflight

Northrop Grumman contracted for Hawkeye radar plane for Japan

Top 10 take-aways from New York Fashion Week

TIME AND SPACE
Planet Vulcan Found

When is a star not a star?

TESS Shares First Science Image in Hunt to Find New Worlds

New Exoplanet Discovered by Team Led by Canadian Student

TIME AND SPACE
Juno image showcases Jupiter's brown barge

New research suggest Pluto should be reclassified as a planet

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.