. 24/7 Space News .
TECH SPACE
Scientists develop new way to prevent spacecraft errors
by Staff Writers
Moscow (Sputnik) Sep 19, 2018

file illustration only

Scientists from the National Research Nuclear University MEPhI and the Russian Academy of Sciences' Scientific Research Institute of System Development have recently developed components for designing fault-tolerant asynchronous circuits, which can be used in space vehicles, the MEPhI press service reports.

Microcircuits that are traditionally used in cars and computers are poorly suited to space vehicles due to low reliability when subject to space radiation. In space, high-energy ions cause device errors and failures. Thus, in developing ASICs (Application-Specific Integrated Circuits) for spacecraft, scientists need to create special methods for improving fault-tolerance (to put it simply, reliability).

"The thing about synchronous circuits is that their complexity, just like the number of elements on the circuit chip, is constantly increasing," said Maxim Gorbunov, assistant professor at MEPhI. "Sections of these circuits, which are located at a large distance, must be synchronized according to their clock rates (a CPU's clock cycles per second). Which means, if the signals produced by the clock generator do not come within the exact time intervals, the circuit simply stops working."

This is a complex engineering issue that includes the deterioration of microchip characteristics, Gorbunov said. That is why asynchronous circuits, which do not require clock rate synchronization, are considered to be so promising today.

"In asynchronous circuits switching occurs in parallel and without a delay; this makes these circuits more efficient and more energy intensive than their synchronous counterparts," Gorbunov explained. "The data reaches the processing unit as fast as the processor's data path allows, and is processed whenever the respective microcircuit chips are ready."

When it comes to the methodology of designing these circuits, it's far more problematic since there is no standard route for designing them. Despite the fact that the general idea for designing asynchronous circuits was proposed in the 1970s, most still primarily work with synchronous circuits.

"We have explored the technical possibilities of synchronous circuits to their limits," Gorbunov said. "Today, design parameters (the minimal size of microcircuit elements) do not exceed ten nanometers. Asynchronous circuits with the same design parameters would operate faster than their synchronous counterparts, since they would not require synchronization."

That is why Russian scientists decided to come up with new elements for quicker and more reliable asynchronous microcircuits. The article, which was published in the journal Acta Astronautica, is on fault-resistant Muller C-elements - the basic logic gates used in designing asynchronous circuits.

C-elements are logic devices with a built-in memory element. They are essentially building blocks with two inputs; when they coincide, the signal continues, but when they do not, the elements store the previous value in their memory.

"By applying the DICE (Dual Interlocked Cell) method, which is widely used in designing synchronous circuits, to three C-element designs, we obtained three new DICE C-element designs with improved fault tolerance," said another author on the article, Igor Danilov, head of the Radiation-Hard Fault-Tolerant VLSI Circuits Department at RAS Scientific Research Institute of System Development.

The researchers claim this new development can be used in designing asynchronous microcircuits with improved fault-tolerance for sophisticated space vehicles.

Source: Sputnik News


Related Links
Roscosmos
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Satellites more at risk from fast solar wind than a major space storm
London, UK (SPX) Sep 10, 2018
Satellites are more likely to be at risk from high-speed solar wind than a major geomagnetic storm according to a new UK-US study published this week in the Journal Space Weather. Researchers investigating the space weather risks to orbiting satellites calculated electron radiation levels within the Van Allen radiation belts. This ring-doughnut-shaped zone wraps around the Earth, trapping charged particles. Geostationary orbit lies inside the Van Allen radiation belts The study, which analys ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA Will Pay Anyone $15,700 to Stay in Bed for 70 Days

Danish Aerospace Company ApS to build 'next generation,' multi-function exercise equipment for astronauts

Yusaku Maezawa: Japanese spaceman with a taste for art

NASA completes Orion parachute tests for missions with astronauts

TECH SPACE
SpaceX announces new plan to send tourist around Moon

Japanese billionaire businessman revealed as SpaceX's first Moon traveler

Baikonur Facilities to Undergo Overhaul Before OneWeb Satellites Launch - Source

Roscosmos Finds No Flaw in Fabric of Soyuz Vehicle at Assembly Stage - Source

TECH SPACE
River basin provides evidence of ancient ocean on Mars

Curiosity Surveys a Mystery Under Dusty Skies

A new listening plan for Mars Opportunity rover

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

TECH SPACE
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

TECH SPACE
GMV primes the biggest contract ever signed by Spain's space industry

Creating Dynamism in Indian Space Ecosystem

Making space exploration real on Earth

Telesat advanced satellite begins on-orbit operations reports SSL

TECH SPACE
Experiment obtains entanglement of six light waves with a single laser

Northrop Grumman contracted for Hawkeye radar plane for Japan

Top 10 take-aways from New York Fashion Week

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry

TECH SPACE
When is a star not a star?

TESS Shares First Science Image in Hunt to Find New Worlds

New Exoplanet Discovered by Team Led by Canadian Student

SwRI scientists find evidence for early planetary shake-up

TECH SPACE
New research suggest Pluto should be reclassified as a planet

Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.