. 24/7 Space News .
TIME AND SPACE
UC physicists join collaborative efforts in search for new ghost neutrinos
by Staff Writers
Cincinnati OH (SPX) Oct 13, 2016


One of the Daya Bay Experimental Halls (L) and the MINOS Far Detector (R). Image courtesy Alexandre B. Sousa, physicist on the joint project. For a larger version of this image please go here.

University of Cincinnati physicists have joined forces in a major international collaboration to shed new light on one of the most pressing questions in particle physics - "do sterile neutrinos exist?"

After looking at how the three known neutrino types behave and interact - classified as electron, muon and tau 'flavors' - a new research collaboration between the U.S.-based MINOS accelerator neutrino experiment and China's Daya Bay reactor neutrino experiment has looked for an elusive new light sterile neutrino that may resolve some outstanding puzzles in astrophysics and cosmology.

"Neutrinos are almost nothing at all, as they have almost no mass and no electric charge, but these itty-bitty ghost particles that can travel at near light speeds are all around us, from those created at the Big Bang to those originating in nuclear fusion at the center of the sun - the same process that produces sunlight," says Alexandre B. Sousa, University of Cincinnati assistant professor of physics and part of the MINOS experiment. "And they play an essential role in our fundamental understanding of how the universe works."

Back in the 1990s, scientists working on the Liquid Scintillator Neutrino Detector (LSND) experiment at Los Alamos announced evidence of muon neutrinos oscillating into electron neutrinos. However, the oscillation was occurring much faster than the neutrino oscillations discovered by the Super-Kamiokande experiment that led to the 2015 Nobel Prize in Physics.

According to the researchers, if the LSND results are correct and due to neutrino oscillations, the most likely explanation is the existence of a new, fourth type of neutrino. But this new neutrino would have to be much stranger than anything seen before, being sterile, meaning that it does not interact with matter except through gravity.

Over the last twenty years, a number of experiments have tried to confirm or refute the LSND findings, but Sousa says the results have been inconclusive. The new results released by the MINOS and Daya Bay experiments strongly suggest that the ghost-like sterile neutrinos do not explain the LSND result after all. The findings of these studies, which include physicists from the University of Cincinnati, are now published in the journal Physical Review Letters, titled, "Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay and Bugey-3 Experiments."

Since the LSND experiment saw muon-type antineutrinos turning into electron-type antineutrinos, scientists must look at both types of neutrinos simultaneously to address the LSND observations - this is where Sousa says the collaboration between Daya Bay and MINOS comes in.

The MINOS experiment uses an intense beam of muon neutrinos that travels 735 km from the Fermi National Accelerator Laboratory in Chicago to the Soudan Underground Laboratory in northern Minnesota. MINOS has made world-leading measurements of neutrino oscillation parameters by studying how these neutrinos disappear as they travel between the two detectors. The existence of a sterile neutrino could cause some of these muon neutrinos to disappear at a faster rate than one would expect if sterile neutrinos do not exist.

So far scientists working on the MINOS experiment have shown that this does not happen.

The Daya Bay experiment looks at electron antineutrinos coming from a nuclear power plant in the Guangdong province of China. Daya Bay observed that some of these antineutrinos disappear and measured for the first time one of the parameters governing neutrino oscillations, for which they earned the 2016 Breakthrough Prize in Fundamental Physics.

A sterile neutrino would affect the rate at which these electron antineutrinos disappear, but the Daya Bay scientists have also seen no evidence for this. These two separate results from MINOS and Daya Bay, on their own, are not enough to address the puzzle that LSND set out almost twenty years ago.

"Neither the MINOS nor Daya Bay disappearance results alone can be compared to the LSND appearance measurements," says En-Chuan Huang of Los Alamos Laboratory and the University of Illinois at Urbana-Champaign, one of the scientists working on the Daya Bay experiment. "Looking at multiple types of neutrinos together, however, gives us a much stronger handle on sterile neutrinos."

In spite of the results, the researchers say they have significantly shrunk the hiding space for this light sterile neutrino.

"It's not common for two major neutrino experiments to work together this closely," says Adam Aurisano, postdoctoral fellow with the University of Cincinnati Department of Physics and the lead MINOS scientist who worked on the result. "But to really make a statement about the LSND evidence for sterile neutrinos, we must take Daya Bay's electron-antineutrino data and the MINOS muon-neutrino data and put them both together into a single analysis."

It is the combination of these two results, the MINOS experiment probing the conversion of muon neutrinos to sterile neutrinos and the Daya Bay experiment testing the conversion from electron antineutrinos into sterile neutrinos that researchers say has significantly shrunk the hiding space for this light sterile neutrino. This will also help other search efforts for knowing where to look for these elusive particles.

Moreover, the researchers - including Jacob Todd, UC physics doctoral student who is the lead analyst in searches for sterile neutrinos with MINOS+ - anticipate an even more sensitive search for sterile neutrinos. New data from the MINOS+ experiment (which uses a higher energy beam than MINOS) will be combined with four times more data from Daya Bay in a forthcoming joint analysis to be carried out over the next year.

"The neutrino is one of the most enigmatic particles we have encountered," says Aurisano. "And as history suggests, surprises may await us."

Research paper: Limits on Active to Sterile Neutrino Oscillation from Disappearance Searches in the MINOS, Daya Bay and Bugey-3 Experiments


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cincinnati
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Lights, action, electrons!
Onna, Japan (SPX) Oct 14, 2016
Ever since J.J. Thompson's 1897 discovery of the electron, scientists have attempted to describe the subatomic particle's motion using a variety of different means. Electrons are far too small and fast to be seen, even with the help of a light microscope. This has made measuring an electron's movement very difficult for the past century. However, new research from the Femtosecond Spectroscopy Un ... read more


TIME AND SPACE
Spectacular Lunar Grazing Occultation of Bright Star on Oct. 18

Small Impacts Are Reworking Lunar Soil Faster Than Scientists Thought

A facelift for the Moon every 81,000 years

Hunter's Supermoon to light up Saturday night sky

TIME AND SPACE
Ready for the Red Planet

What! - Go To Mars?

Modeling floods that formed canyons on Earth and Mars

NASA's MAVEN Mission Gives Unprecedented Ultraviolet View of Mars

TIME AND SPACE
Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Growing Interest: Students Plant Seeds to Help NASA Farm in Space

TIME AND SPACE
China closer to establishing permanent space station

Ambitious space satellite projects set for liftoff

China to enhance space capabilities with launch of Shenzhou-11

China launches 2 astronauts for 33-day mission

TIME AND SPACE
Tools Drive NASA's TReK to New Discoveries

Hurricane Nicole delays next US cargo mission to space

Automating sample testing thanks to space

Orbital CRS-5 launching hot and bright science to space

TIME AND SPACE
US-Russia Standoff Leaves NASA Without Manned Launch Capabilities

Swedish Space Corporation Celebrates 50th Anniversary of Esrange Space Center

Ariane 5 ready for first Galileo payload

More commercial spaceports going ahead

TIME AND SPACE
Proxima Centauri might be more sunlike than we thought

Stars with Three Planet-Forming Discs of Gas

TESS will provide exoplanet targets for years to come

The death of a planet nursery?

TIME AND SPACE
Mars astronauts face chronic dementia risk from cosmic ray exposure

U.S. State Dept. approves $194 million radar sale to Kuwait

Lego-like wall produces acoustic holograms

Efficiency plus versatility









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.