. 24/7 Space News .
ENERGY TECH
Tripling the energy storage of lithium-ion batteries
by Staff Writers
Upton NY (SPX) Jun 15, 2018

illustration only

As the demand for smartphones, electric vehicles, and renewable energy continues to rise, scientists are searching for ways to improve lithium-ion batteries--the most common type of battery found in home electronics and a promising solution for grid-scale energy storage. Increasing the energy density of lithium-ion batteries could facilitate the development of advanced technologies with long-lasting batteries, as well as the widespread use of wind and solar energy. Now, researchers have made significant progress toward achieving that goal.

A collaboration led by scientists at the University of Maryland (UMD), the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, and the U.S. Army Research Lab have developed and studied a new cathode material that could triple the energy density of lithium-ion battery electrodes. Their research was published on June 13 in Nature Communications.

"Lithium-ion batteries consist of an anode and a cathode," said Xiulin Fan, a scientist at UMD and one of the lead authors of the paper. "Compared to the large capacity of the commercial graphite anodes used in lithium-ion batteries, the capacity of the cathodes is far more limited. Cathode materials are always the bottleneck for further improving the energy density of lithium-ion batteries."

Scientists at UMD synthesized a new cathode material, a modified and engineered form of iron trifluoride (FeF3), which is composed of cost-effective and environmentally benign elements--iron and fluorine. Researchers have been interested in using chemical compounds like FeF3 in lithium-ion batteries because they offer inherently higher capacities than traditional cathode materials.

"The materials normally used in lithium-ion batteries are based on intercalation chemistry," said Enyuan Hu, a chemist at Brookhaven and one of the lead authors of the paper. "This type of chemical reaction is very efficient; however, it only transfers a single electron, so the cathode capacity is limited. Some compounds like FeF3 are capable of transferring multiple electrons through a more complex reaction mechanism, called a conversion reaction."

Despite FeF3's potential to increase cathode capacity, the compound has not historically worked well in lithium-ion batteries due to three complications with its conversion reaction: poor energy efficiency (hysteresis), a slow reaction rate, and side reactions that can cause poor cycling life. To overcome these challenges, the scientists added cobalt and oxygen atoms to FeF3 nanorods through a process called chemical substitution. This allowed the scientists to manipulate the reaction pathway and make it more "reversible."

"When lithium ions are inserted into FeF3, the material is converted to iron and lithium fluoride," said Sooyeon Hwang, a co-author of the paper and a scientist at Brookhaven's Center for Functional Nanomaterials (CFN). "However, the reaction is not fully reversible. After substituting with cobalt and oxygen, the main framework of the cathode material is better maintained and the reaction becomes more reversible."

To investigate the reaction pathway, the scientists conducted multiple experiments at CFN and the National Synchrotron Light Source II (NSLS-II)--two DOE Office of Science User Facilities at Brookhaven.

First at CFN, the researchers used a powerful beam of electrons to look at the FeF3 nanorods at a resolution of 0.1 nanometers--a technique called transmission electron microscopy (TEM). The TEM experiment enabled the researchers to determine the exact size of the nanoparticles in the cathode structure and analyze how the structure changed between different phases of the charge-discharge process. They saw a faster reaction speed for the substituted nanorods.

"TEM is a powerful tool for characterizing materials at very small length scales, and it is also able to investigate the reaction process in real time," said Dong Su, a scientist at CFN and a co-corresponding author of the study. "However, we can only see a very limited area of the sample using TEM. We needed to rely on the synchrotron techniques at NSLS-II to understand how the whole battery functions."

At NSLS-II's X-ray Powder Diffraction (XPD) beamline, scientists directed ultra-bright x-rays through the cathode material. By analyzing how the light scattered, the scientists could "see" additional information about the material's structure.

"At XPD, we conducted pair distribution function (PDF) measurements, which are capable of detecting local iron orderings over a large volume," said Jianming Bai, a co-author of the paper and a scientist at NSLS-II. "The PDF analysis on the discharged cathodes clearly revealed that the chemical substitution promotes electrochemical reversibility."

Combining highly advanced imaging and microscopy techniques at CFN and NSLS-II was a critical step for assessing the functionality of the cathode material.

"We also performed advanced computational approaches based on density functional theory to decipher the reaction mechanism at an atomic scale," said Xiao Ji, a scientist at UMD and co-author of the paper.

"This approach revealed that chemical substitution shifted the reaction to a highly reversible state by reducing the particle size of iron and stabilizing the rocksalt phase."Scientists at UMD say this research strategy could be applied to other high energy conversion materials, and future studies may use the approach to improve other battery systems.

Research paper


Related Links
Brookhaven National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Paving the way for safer, smaller batteries and fuel cells
Philadelphia PA (SPX) Jun 12, 2018
Fuel cells and batteries provide electricity by generating and coaxing positively charged ions from a positive to a negative terminal which frees negatively charged electrons to power cellphones, cars, satellites, or whatever else they are connected to. A critical part of these devices is the barrier between these terminals, which must be separated for electricity to flow. Improvements to that barrier, known as an electrolyte, are needed to make energy storage devices thinner, more efficient, safe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
New Era of Space Exploration is "Internet of Tomorrow"

New crew blasts off for ISS

New crew blasts off for ISS

NASA Narrows Scope for Proposed Astrophysics Missions

ENERGY TECH
US Senate introduces measure to upgrade defense against hypersonic threats

First Engine Assembled for DARPA and Boeing Reusable Experimental Spaceplane

Russian Reusable Space Rocket Tests Scheduled for 2022

Lockheed Martin Wins Potential $928 Million Contract to Develop New Hypersonic Missile for the Air Force

ENERGY TECH
More building blocks of life found on Mars

Curiosity rover finds organic matter, unidentified methane source on Mars

NASA finds ancient organic material, mysterious methane on Mars

Science Team Continues to Improve Opportunity's Use of the Robotic Arm

ENERGY TECH
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

ENERGY TECH
US FCC expands market access for SES O3b MEO constellation

Liftoff as Alexander Gerst returns to space

Lockheed Martin Announces $100 Million Venture Fund Increase

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

ENERGY TECH
Cooling by laser beam

New 3D printer can create complex biological tissues

Researchers mimic comet moth's silk fibers to make 'air-conditioned' fabric

Soaking up the water and the sweat - a new super desiccant

ENERGY TECH
Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

Searching for Potential Life-Hosting Planets Beyond Earth

Sorry ET, Got Here First: Russian Scientist Suggests Humans Would Destroy Aliens

ENERGY TECH
NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'

Scientists reveal the secrets behind Pluto's dunes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.