. 24/7 Space News .
ENERGY TECH
Paving the way for safer, smaller batteries and fuel cells
by Staff Writers
Philadelphia PA (SPX) Jun 25, 2018

File image.

Fuel cells and batteries provide electricity by generating and coaxing positively charged ions from a positive to a negative terminal which frees negatively charged electrons to power cellphones, cars, satellites, or whatever else they are connected to. A critical part of these devices is the barrier between these terminals, which must be separated for electricity to flow.

Improvements to that barrier, known as an electrolyte, are needed to make energy storage devices thinner, more efficient, safer, and faster to recharge. Commonly used liquid electrolytes are bulky and prone to shorts, and can present a fire or explosion risk if they're punctured.

Research led by University of Pennsylvania engineers suggests a different way forward: a new and versatile kind of solid polymer electrolyte (SPE) that has twice the proton conductivity of the current state-of-the-art material. Such SPEs are currently found in proton-exchange membrane fuel cells, but the researchers' new design could also be adapted to work for the lithium-ion or sodium-ion batteries found in consumer electronics.

The study, published in Nature Materials, was led by Karen I. Winey, TowerBrook Foundation Faculty Fellow, professor and chair of the Department of Materials Science and Engineering, and Edward B. Trigg, then a doctoral student in her lab. Demi E. Moed, an undergraduate member of the Winey lab, was a coauthor.

They collaborated with Kenneth B. Wagener, George B. Butler Professor of Polymer Chemistry at the University of Florida, Gainesville, and Taylor W. Gaines, a graduate student in his group. Mark J. Stevens, of Sandia National Laboratories, also contributed to this study, as well as Manuel Marechal and Patrice Rannou, of the French National Center for Scientific Research, the French Alternative Energies and Atomic Energy Commission, and the Universite Grenoble Alpes.

A variety of SPEs already exists. Nafion, which is widely used in proton-exchange membrane fuel cells, is a sheet of flexible plastic that is permeable to protons and impermeable to electrons. After absorbing water, protons can flow through microscopic channels that span the film.

A thin, SPE like Nafion is especially enticing for fuel cells in aerospace applications, where every kilogram counts. Much of the bulk of portable batteries comes from shielding designed to protect liquid electrolytes from punctures. Systems using liquid electrolytes must separate the electrodes further apart then their solid electrolyte counterparts, as metal build-up on the electrodes can eventually cross the channel and cause a short.

Nafion addresses those problems, but there is still much room for improvement.

"Nafion is something of a fluke," Winey says. "Its structure has been the subject of debate for decades, and will likely never be fully understood or controlled."

Nafion is hard to study because its structure is random and disordered. This fluorinated polymer occasionally branches off into side chains that end with sulfonic acid groups. It's these sulfonic acids that draw in water and form the channels that allow for proton transport from one side of the film to the other. But because these side chains occur at random positions and are of different lengths, the resulting channels through the disordered polymer are a twisty maze that transports ions.

With an eye toward cutting through this maze, Winey's group recently collaborated with Stevens to discover a new proton-transporting structure that has ordered layers. These layers feature many parallel acid-lined channels through which protons can quickly flow.

"It's like superhighways versus the country roads of Provence," Winey says.

This new structure is the result of a special chemical synthesis route developed by Wagener's group at the University of Florida. This route evenly places the acid groups along a polymer chain such that the spacing between the functional groups is long enough to crystalize. The most detailed structural analysis to date was on a polymer with exactly 21 carbons atoms between carboxylic acid groups, the polymer that initiated the Penn-Florida collaboration a decade ago.

While Winey's group and Stevens were working out the structure and noting it's potential for transporting ions, Wagener's group was working to incorporate sulfonic acid groups to demonstrate the diversity of chemical groups that could be attached to polyethylenes. Both teams realized that proton conductivity would require the stronger acid.

"Precisely placing the sulfonic acid groups along polyethylene proved to be our biggest synthetic challenge," Wagener says. "Success finally happened in the hands of Taylor Gaines, who devised a scheme we call 'heterogeneous to homogeneous deprotection' of the sulfonic acid group ester. It was this synthetic process which finally led to the formation of the precision sulfonic acid polymers."

The details of this process were also recently published in the journal Macromolecular Chemistry and Physics.

With the chains forming a series of hairpin shapes with a sulfonic acid group at each turn, the polymer assembles into orderly layers, forming straight channels instead of the tortuous maze found in Nafion.

There are, literally, still some kinks to work out. The group's next step is to orient these layers in the same direction throughout the film.

"We're already faster than Nafion by a factor of two, but we could be even faster if we aligned all of those layers straight across the electrolyte membrane," Winey says.

More than improving fuel cells where Nafion is currently employed, the crystallization-induced layers described in the researchers' study could be extended to work with functional groups compatible with other kinds of ions.

"Better proton conduction is definitely valuable, but I think the versatility of our approach is what is ultimately most important," Winey says. "There's still no sufficiently good solid electrolyte for lithium or for hydroxide, another common fuel cell ion, and everyone who is trying to design new SPEs is using a very different approach than ours."

Cellphone batteries made with this type of SPE could be thinner and safer, with the superhighway-style ion channels enabled by the researchers' design, recharge much faster.

"Precision synthesis has been one of the grand challenges in polymer science, and this remarkable work demonstrates how it can open doors to novel materials of great promise," says Linda Sapochak, director of the National Science Foundation's Division of Materials Research. "NSF is excited to see that its support at both universities for this integrative collaboration has led to a synergistic breakthrough."

Research paper


Related Links
University of Pennsylvania
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Better, faster, stronger: Building batteries that don't go boom
Houghton MI (SPX) May 31, 2018
There's an old saying: "You must learn to walk before you learn to run." Despite such wisdom, numerous industries skip the basics and sign up for marathons instead, including the battery industry. Lithium ion batteries hold incredible promise for improved storage capacity, but they are volatile. We've all heard the news about lithium ion batteries in phones - most notably the Samsung Galaxy 7 - causing phones to catch fire. Much of the problem arises from the use of flammable liquid electrol ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Deep space navigation: tool tested as emergency navigation device

NASA Administrator Statement on Space Policy Directive-3

New head of 'space nation' aims for the stars

Hague, Ovchinin talk ISS mission during presser

ENERGY TECH
The rockets that are pushing the boundaries of space travel

Aerojet Rocketdyne and SMC investing in engine technology

Virgin Orbit's LauncherOne to join Spaceflight's portfolio of launch vehicles

Foam and cork insulation protects deep space rocket from fire and ice

ENERGY TECH
Opportunity sleeps during a planet-encircling dust storm

Martian Dust Storm Grows Global; Curiosity Captures Photos of Thickening Haze

Explosive volcanoes spawned mysterious Martian rock formation

Unique microbe could thrive on Mars, help future manned missions

ENERGY TECH
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

ENERGY TECH
Forget Galileo - UK space sector should look to young stars instead

A milestone in securing ESA's future role in the global exploration of space

SSL ships first of 3 ComSats slated for launch this summer

GomSpace and Aerial Maritime Ltd enter MOU for delivery and operation of a global constellation

ENERGY TECH
Clearing out space junk, one step at a time

RemoveDEBRIS spacecraft launched from ISS with Airbus space debris capture removal technology

Experiments of the Russian scientists in space lead to a new way of 3D-bioprinting

Futuristic data storage

ENERGY TECH
Hunting molecules to find new planets

Will we know life when we see it

Scientists developing guidebook for finding life beyond Earth

Nearly 80 exoplanet candidates identified in record time

ENERGY TECH
Webb Telescope to target Jupiter's Great Red Spot

Charon at 40: four decades of discovery on Pluto's largest moon

A dark and stormy Jupiter

NASA shares more Pluto images from New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.