. 24/7 Space News .
TIME AND SPACE
Towards mastering terahertz waves?
by Staff Writers
Geneva, Switzerland (SPX) Mar 09, 2017


Graphene based device is shown. Image courtesy UNIGE.

The terahertz waves span frequency ranges between the infrared spectrum (used, for example, for night vision) and gigahertz waves (which find their application, among other, in Wi-Fi connections). Terahertz waves allow for the detection of materials that are undetectable at other frequencies. However, the use of these waves is severely limited by the absence of suitable devices and materials allowing to control them.

Researchers at the University of Geneva (UNIGE), working with the Federal Polytechnic School in Zurich (ETHZ) and two Spanish research teams, have developed a technique based on the use of graphene, which allows for the potentially very quick control of both the intensity and the polarization of terahertz light. This discovery, presented in Nature Communications, paves the way for a practical use of terahertz waves, in particular for imaging and telecommunications.

Graphene is a single atomic layer of carbon atoms that form a honeycomb network. It is found for example in graphite, the main constituent of pencil rods. In the Department of Quantum Matter Physics of UNIGE's Faculty of Sciences, Alexey Kuzmenko's team has been working on graphene's physical properties for several years.

"The interaction between terahertz radiation and the electrons in graphene is very strong and we have therefore come to the hypothesis that it should be possible to use graphene to manage terahertz waves," Kuzmenko explains. Working within the framework of the European project Graphene Flagship, scientists have made a graphene-based transistor adapted to terahertz waves.

"By combining the electrical field, which enables us to control the number of electrons in graphene and thus allows more or less light to pass through, with the magnetic field, which bends the electronic orbits, we have been able to control not just the intensity of the terahertz waves, but also their polarisation," comments Jean-Marie Poumirol, a member of the UNIGE research team and the first author of the study.

"It is rare that purely electrical effects are used to control magnetic phenomena." Scientists are now able to apply such control over a complete range of terahertz frequencies.

Practical applications of terahertz waves
Today, the UNIGE research team's focus is to move on from the prototype, and develop practical applications and new opportunities by controlling terahertz waves. Their objective is to make terahertz waves industrially competitive in the next few years. There are two main areas of application for this innovation, the first being communications.

"Using a film of graphene associated with terahertz waves, we should be potentially able to send fully-secured information at speeds of about 10 to 100 times faster than with Wi-Fi or radio waves, and do it securely over short distances," explains Poumirol. This would present a significant advantage in telecommunications.

The second sphere of application is that of imaging.

Being non-ionising, terahertz waves do not alter DNA and therefore are very useful in medicine, biology and pharmacy. Additionally, the control of the circular polarization of the terahertz waves will allow distinction between different symmetries (left-handed or right-handed) of biological molecules, which is a very important property in medical applications.

Furthermore, there is potentially a very powerful application of these waves in homeland security. Kuzmenko continues, "Terahertz waves are stopped by metals and are sensitive to plastics and organic matter. This could lead to more effective means of detecting firearms, drugs and explosives carried by individuals, and could perhaps serve as a tool to strengthen airport safety."

TIME AND SPACE
Quantum entanglement between a single photon and a trillion of atoms
Warsaw, Poland (SPX) Mar 03, 2017
New light is shed on the famous paradox of Einstein, Podolsky and Rosen after 80 years. A group of researchers from the Faculty of Physics at the University of Warsaw has created a multidimensional entangled state of a single photon and a trillion of hot rubidium atoms. This hybrid entanglement has been stored in the laboratory for several microseconds. The research has been published in the pre ... read more

Related Links
Universite de Geneve
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Orion spacecraft achieves key safety milestone

The NASA Imager Dentists Use Daily

Marshall shakes, packs, ships and tracks NASA payloads

NASA and SpaceX gives ASU a competitive edge in technological innovation

TIME AND SPACE
SpaceX says it will fly civilians to the moon next year

Moon tourists risk rough ride, experts say

Flight Hardware for NASA's Space Launch System on Its Way to Cape

Spacex To Send Privately Crewed Dragon Spacecraft Beyond The Moon Next Year

TIME AND SPACE
NASA Orbiter Steers Clear of Mars Moon Phobos

Remnants of a mega-flood on Mars

Science checkout continues for ExoMars orbiter

NASA Explores Opportunity for Smaller Experiments to 'Hitch a Ride' to Mars

TIME AND SPACE
Thinking Big: China Hopes to Conduct 2nd Mission to Mars by 2030

China to Conduct Test Flight of CZ-8 Carrier Rocket by 2018

China to launch first high-throughput communications satellite in April

Chinese cargo spacecraft set for liftoff in April

TIME AND SPACE
OneWeb, Intelsat merge to advance satellite internet

GomSpace to supply satellites for Sky and Space Global constellation

Kacific places order with Boeing for a high throughput satellite

ESA affirms Open Access policy for images, videos and data

TIME AND SPACE
Coffee-ring effect leads to crystallization control

3-D printing with plants

Researchers remotely control sequence in which 2-D sheets fold into 3-D structures

Scientists demonstrate improved particle warning to protect astronauts

TIME AND SPACE
Faraway Planet Systems Are Shaped Like the Solar System

Biochemical 'fossil' shows how life may have emerged without phosphate

The missing link in how planets form

Volcanic hydrogen spurs chances of finding exoplanet life

TIME AND SPACE
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.