. 24/7 Space News .
TECTONICS
Tectonic plates weaker than previously thought
by Staff Writers
Oxford, UK (SPX) Sep 15, 2017


File image.

Experiments carried out at Oxford University have revealed that tectonic plates are weaker than previously thought. The finding explains an ambiguity in lab work that led scientists to believe these rocks were much stronger than they appeared to be in the natural world. This new knowledge will help us understand how tectonic plates can break to form new boundaries.

Study co-author Lars Hansen, Associate Professor of Rock and Mineral Physics in Oxford University's Department of Earth Sciences, said: 'The strength of tectonic plates has been a major target of research for the past four decades. For plate tectonics to work, plates must be able to break to form new plate boundaries. Significant effort has gone into measuring the strength of the key olivine-rich rocks that make up plates using laboratory experiments.

'Unfortunately, those estimates of rock strength have been significantly greater than the apparent strength of plates as observed on Earth. Thus, there is a fundamental lack of understanding of how plates can actually break to form new boundaries. Furthermore, the estimates of rock strength from laboratory experiments exhibit considerable variability, reducing confidence in using experiments to estimate rock properties.'

The new research, published in the journal Science Advances, uses a technique known as 'nanoindentation' to resolve this discrepancy and explain how the rocks that make up tectonic plates can be weak enough to break and form new plate boundaries.

Dr Hansen said: 'We have demonstrated that this variability among previous estimates of strength is a result of a special length-scale within the rocks - that is, the strength depends on the volume of material being tested. To determine this we used nanoindentation experiments in which a microscopic diamond stylus is pressed into the surface of an olivine crystal. These experiments reveal that the strength of the crystal depends on the size of the indentation.

'This concept translates to large rock samples, for which the measured strength increases as the size of the constituent crystals decreases. Because most previous experiments have used synthetic rocks with crystal sizes much smaller than typically found in nature, they have drastically overestimated the strength of tectonic plates. Our results therefore both explain the wide range of previous estimates of rock strength and provide confirmation that the strength of the rocks that make up tectonic plates is low enough to form new plate boundaries.'

The study was an international collaboration involving scientists from Stanford University, the University of Pennsylvania, Oxford University and the University of Delaware.

Dr Hansen added: 'This result has implications beyond forming tectonic plate boundaries. Better predictions of the strength of rocks under these conditions will help inform us on many dynamic processes in plates.

For instance, we now know that the evolution of stresses on earthquake-generating faults likely depends on the size of the individual crystals that make up the rocks involved. In addition, flexing of plates under the weight of volcanoes or large ice sheets, a process intimately linked to sea level on Earth, will also ultimately depend on crystal size.'

Research paper

TECTONICS
Measuring a crucial mineral in the mantle
Newark DE (SPX) Sep 15, 2017
University of Delaware professor Jessica Warren and colleagues from Stanford University, Oxford University and University of Pennsylvania, reported new data that material size-effects matter in plate tectonics. Plate tectonics, the way the Earth's plates move apart and come back together, has been used since the 1960s to explain the location of volcanoes and earthquakes. The study (link he ... read more

Related Links
University of Oxford
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Voyager Spacecraft: 40 Years of Solar System Discoveries

Trump names former Navy aviator to head NASA

What's hot and what's not at Berlin's IFA tech fair

'Star Trek' actor Shatner sends message to Voyager

TECTONICS
Rocket fever launches UB students to engineering competition in New Mexico

NASA Concludes Summer of Testing with Fifth Flight Controller Hot Fire

ISRO suspects pyro elements failed to separate rocket's heat shield

Ariane 5 rocket aborts Guiana lift-off in final seconds

TECTONICS
Discovery of boron on Mars adds to evidence for habitability

Life on Mars: Let's Try Oman Desert First for Space Mission

Citizen scientists spot Martian 'spiders' in unexpected places

Big dishes band together

TECTONICS
China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

Russia, China May Sign 5-Year Agreement on Joint Space Exploration

ESA and Chinese astronauts train together

TECTONICS
Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

India to Launch Exclusive Satellite for Afghanistan

Lockheed Martin invests $350M in state-of-the-art satellite production facility

TECTONICS
New microscopy method for quick and reliable 3-D imaging of curvilinear nanostructures

Chinese video site offers virtual escape from 'boring' reality

Chinese video site offers virtual escape from 'boring' reality

Molecules move faster near sticky surfaces

TECTONICS
Could interstellar ice provide the answer to birth of DNA

Climate change for aliens

X-Rays Reveal Temperament of Possible Planet-Hosting Stars

Earth as Hybrid Planet: The Anthropocene Era in Astrobiological Context

TECTONICS
Pluto features given first official names

Jupiter's Auroras Present a Powerful Mystery

New Horizons Files Flight Plan for 2019 Flyby

Juno Scientists Prepare for Seventh Science Pass of Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.