. 24/7 Space News .
CARBON WORLDS
'Super-deep' diamonds may hold new information about Earth's interior
by Staff Writers
Sendai, Japan (SPX) Mar 03, 2017


Earth's interior and the hometown of super-deep diamonds. Image courtesy Fumiya Maeda.

Researchers at Tohoku University believe that it is possible for natural diamonds to form at the base of the Earth's mantle. The formation of such "super-deep" diamonds was simulated using high-pressure and high-temperature experiments by the Japanese research team, led by Fumiya Maeda.

Diamonds are evidence that carbon exists deep in the Earth. Most natural diamonds are formed around the depth of 200km. But it's been suggested that some extremely rare diamonds come from as deep as 400km. Such diamonds are called "super-deep" diamonds, and researchers are hoping that they may offer new clues about the deep interior of the Earth.

This is because natural diamonds often contain mineral inclusions in their crystals, and these inclusions can reveal the conditions of the environment where the diamonds were formed. The hardness of the diamonds also make them good capsules as they can protect the inclusions from contamination or breakdown when they are brought to the Earth's surface.

Although super-deep diamonds can provide good samples to help understand the Earth's deep interior, researchers say they are still uncertain of the real depth and the formation process of these diamonds.

Results of their experiment show that super-deep diamonds can form through the reaction of Mg-carbonate and silica minerals. The reaction may occur in cold plates which descend all the way to the base of the mantle.

Details of actual diamond formation in such a deep part of the Earth has so far, never been reported. But researchers plan to combine their recent experimental model with observation and analysis, in the hopes of getting information from natural diamonds that would provide further knowledge about our planet.

This study was published in Nature Publishing Group's "Scientific Reports" on January 13, 2017.

Research paper

CARBON WORLDS
Three layers of graphene reveals a new kind of magnet
Mumbai, India (SPX) Feb 28, 2017
Metals have a large density of electrons and to be able to see the wave nature of electrons one has to make metallic wires that are only a few atoms wide. However, in graphene - one atom thick graphite - the density of electrons is much smaller and can be changed by making a transistor. As a result of the low density of electrons the wave nature of electrons, as described by quantum mechanics, i ... read more

Related Links
Tohoku University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NASA Releases Free Software Catalog

India has capability to develop space station, says top official

Orion spacecraft achieves key safety milestone

The NASA Imager Dentists Use Daily

CARBON WORLDS
Space squadron supports record-breaking satellites launch

Blue Origin shares video of New Glenn rocket

Europe launches fourth Earth monitoring satellite

Elon Musk: tech dreamer reaching for sun, moon and stars

CARBON WORLDS
New evidence for a water-rich history on Mars

Humans May Quickly Evolve on Mars, Biologist Claims

NASA Orbiter Steers Clear of Mars Moon Phobos

Remnants of a mega-flood on Mars

CARBON WORLDS
China launches experiment satellite "TK-1"

Riding an asteroid: China's next space goal

China's 1st cargo spacecraft to make three rendezvous with Tiangong-2

China to launch space station core module in 2018

CARBON WORLDS
How low can you go? New project to bring satellites nearer to Earth

Teal Group Pegs Value of Space Payloads Through 2036 at Over $250 Billion

Iridium Safety Voice Communications Installs Surge Past 500 Aircraft

Turkey Moves Closer to Launching Own Space Agency

CARBON WORLDS
Aireon and Thales Begin Validation of Space-Based ADS-B Data

Bubble-recoil could be used to cool microchips, even in space

Space surveillance radar system fully operational

Coffee-ring effect leads to crystallization control

CARBON WORLDS
Hunting for giant planet analogs in our own backyard

Biochemical 'fossil' shows how life may have emerged without phosphate

Faraway Planet Systems Are Shaped Like the Solar System

The missing link in how planets form

CARBON WORLDS
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.