Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Smarter window materials can control light and energy
by Staff Writers
Austin TX (SPX) Jul 27, 2015


The illustration demonstrates the dark, bright and cool mode made possible by the researchers' new architected nanocomposite. The team organized the two components of the composite material to create a porous interpenetrating network. This organization enables substantially faster switching between modes. Image courtesy Cockrell School of Engineering. For a larger version of this image please go here.

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for heating and cooling buildings.

In 2013, chemical engineering professor Delia Milliron and her team became the first to develop dual-band electrochromic materials that blend two materials with distinct optical properties for selective control of visible and heat-producing near-infrared light (NIR). In a 2013 issue of Nature, Milliron's research group demonstrated how, using a small jolt of electricity, a nanocrystal material could be switched back and forth, enabling independent control of light and energy.

The team now has engineered two new advancements in electrochromic materials - a highly selective cool mode and a warm mode - not thought possible several years ago.

The cool mode material is a major step toward a commercialized product because it enables control of 90 percent of NIR and 80 percent of the visible light from the sun and takes only minutes to switch between modes. The previously reported material could require hours.

To achieve this high performance, Milliron and a team, including Cockrell School postdoctoral researcher Jongwook Kim and collaborator Brett Helms of the Lawrence Berkeley National Lab, developed a new nanostructured architecture for electrochromic materials that allows for a cool mode to block near-infrared light while allowing the visible light to shine through. This could help reduce energy costs for cooling buildings and homes during the summer. The researchers reported the new architecture in Nano Letters on July 20.

"We believe our new architected nanocomposite could be seen as a model material, establishing the ideal design for a dual-band electrochromic material," Milliron said. "This material could be ideal for application as a smart electrochromic window for buildings."

In the paper, the team demonstrates how the new material can strongly and selectively modulate visible light and NIR by applying a small voltage.

To optimize the performance of electrochromics for practical use, the team organized the two components of the composite material to create a porous interpenetrating network. The framework architecture provides channels for transport of electronic and ionic change. This organization enables substantially faster switching between modes.

The researchers are now working to produce a similarly structured nanocomposite material by simple methods, suitable for low-cost manufacturing.

In a second research paper, Milliron and her team, including Cockrell School graduate student Clayton Dahlman, have reported a proof-of-concept demonstrating how they can achieve optical control properties in windows from a well-crafted, single-component film.

The concept includes a simple coating that creates a new warm mode, in which visible light can be blocked, while near-infrared light can enter. This new setting could be most useful on a sunny winter day, when an occupant would want infrared radiation to pass into a building for warmth, but the glare from sunlight to be reduced.

In this paper, published in the Journal of the American Chemical Society, Milliron proved that a coating containing a single component -- doped titania nanocrystals - could demonstrate dynamic control over the transmittance of solar radiation. Because of two distinct charging mechanisms found at different applied voltages, this material can selectively block visible or infrared radiation.

"These two advancements show that sophisticated dynamic control of sunlight is possible," Milliron said. "We believe our deliberately crafted nanocrystal-based materials could meet the performance and cost targets needed to progress toward commercialization of smart windows."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Texas at Austin
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Trapped light orbits within an intriguing material
San Diego CA (SPX) Jul 20, 2015
Light becomes trapped as it orbits within tiny granules of a crystalline material that has increasingly intrigued physicists, a team led by University of California, San Diego, physics professor Michael Fogler has found. Hexagonal boron nitride, stacked layers of boron and nitrogen atoms arranged in a hexagonal lattice, has recently been found to bend electromagnetic energy in unusual and potent ... read more


TECH SPACE
NASA Sets Sights on Robot-Built Moon Colony

Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

TECH SPACE
Celebrating 50 years of Martian imagery

Curiosity rover finds evidence of Mars' primitive continental crust

Never Get Lost on Mars Again With NASA's New Red Planet Map

Opportunity Rover's 7th Mars Winter to Include New Study Area

TECH SPACE
Planetary Resources' First Spacecraft Successfully Deployed

NASA selects leading-edge concepts for continued study

US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

TECH SPACE
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

TECH SPACE
Rocket carrying Russian, Japanese, US crew docks with ISS

Student satellite wins green light for Station deployment

'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

TECH SPACE
Ariane 5 orbits Star One C4 and MSG-4 on Arianespace's sixth flight in 2015

CRS-7 Investigation Update

Supporting Arianespace's mission cadence: A new fueling facility is ready

30 launches planned in next three fiscals: ISRO chief

TECH SPACE
ARIEL mission to reveal 'Brave New Worlds' among exoplanets

Astronomers bring a new hope to find 'Tatooine' planets

Bricks to build an Earth found in every planetary system

Observing the birth of a planet

TECH SPACE
Cold crystallization has a dual nature

Trapped light orbits within an intriguing material

For faster, larger graphene add a liquid layer

NATO orders deployable 3D air defense radars




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.