Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Scientists track monster waves below the ocean surface
by Staff Writers
Miami FL (SPX) Jul 27, 2015


The density map covering the South China Sea from Luzon Strait (right side) the 'Generation Area' to Dongsha Island (left side) shows how prolific these internal waves occur in this region and where they are most visible. The wave packets travel east to west. The color denotes how frequently an internal wave was observed in satellite images over a several month period in 2007. Image courtesy CSTARS. For a larger version of this image please go here.

A scientific research team spent seven years tracking the movements of skyscraper-high waves in the South China Sea. University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science scientists were part of the collaborative international field study trying to understand how these waves, which rarely break the ocean surface, develop, move and dissipate underwater.

These waves, known as internal waves, occur in all the oceans, as well as in lakes and fjords. In the Luzon Strait, between Taiwan and the Philippine island of Luzon, they can reach up to 170 meters (558 feet) tall and travel several hundred kilometers, making them some of the largest waves in the world.

Using satellite imagery collected at UM's Center for Southeastern Tropical Remote Sensing (CSTARS), scientists were able to detect and track them from above. The team discovered that internal waves are generated daily from internal tides, which also occur below the ocean surface, and grow larger as the water is pushed westward through the Luzon Strait into the South China Sea.

"The internal wave produces a current that organizes the ripples on the surface, which are picked up by the radar satellite," said study co-author Hans Graber, a UM Rosenstiel School professor of ocean sciences and director of CSTARS. "This allows us to study how these waves, which largely go unnoticed at the surface, propagate and move."

Tracking internal waves from start to finish helps scientists understand these waves for a number of reasons. They move huge volumes of heat, salt, and nutrient rich-water, which are important to fish, industrial fishing operations and the global climate. In addition, they are important to monitor for safe submarine operations.

The team published the study, titled "The formation and fate of internal waves in the South China Sea," in the May 7 issue of the journal Nature. The U.S. Office of Naval Research and the Taiwan National Science Council funded the study.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Miami Rosenstiel School of Marine and Atmospheric Science
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
Climate change reduces coral reefs' ability to protect coasts
Washington DC (SPX) Jul 24, 2015
Coral reefs, under pressure from climate change and direct human activity, may have a reduced ability to protect tropical islands against wave attack, erosion and salinization of drinking water resources, which help to sustain life on those islands. A new paper gives guidance to coastal managers to assess how climate change will affect a coral reef's ability to mitigate coastal hazards. Ab ... read more


WATER WORLD
NASA Sets Sights on Robot-Built Moon Colony

Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

WATER WORLD
Celebrating 50 years of Martian imagery

Curiosity rover finds evidence of Mars' primitive continental crust

Never Get Lost on Mars Again With NASA's New Red Planet Map

Opportunity Rover's 7th Mars Winter to Include New Study Area

WATER WORLD
Planetary Resources' First Spacecraft Successfully Deployed

NASA selects leading-edge concepts for continued study

US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

WATER WORLD
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

WATER WORLD
Rocket carrying Russian, Japanese, US crew docks with ISS

Student satellite wins green light for Station deployment

'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

WATER WORLD
Ariane 5 orbits Star One C4 and MSG-4 on Arianespace's sixth flight in 2015

CRS-7 Investigation Update

Supporting Arianespace's mission cadence: A new fueling facility is ready

30 launches planned in next three fiscals: ISRO chief

WATER WORLD
ARIEL mission to reveal 'Brave New Worlds' among exoplanets

Astronomers bring a new hope to find 'Tatooine' planets

Bricks to build an Earth found in every planetary system

Observing the birth of a planet

WATER WORLD
New mussel-inspired surgical protein glue

Cold crystallization has a dual nature

Trapped light orbits within an intriguing material

For faster, larger graphene add a liquid layer




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.